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C H A P T E R 1

Finite-Sample Properties of OLS

A B S T R A C T

TheOrdinary Least Squares (OLS) estimator is the most basic estimation proce-
dure in econometrics. This chapter covers thefinite- or small-sample properties
of the OLS estimator, that is, the statistical properties of the OLS estimator that are
valid for any given sample size. The materials covered in this chapter are entirely
standard. The exposition here differs from that of most other textbooks in its empha-
sis on the role played by the assumption that the regressors are “strictly exogenous.”

In the final section, we apply the finite-sample theory to the estimation of the
cost function using cross-section data on individual firms. The question posed in
Nerlove’s (1963) study is of great practical importance: are there increasing returns
to scale in electricity supply? If yes, microeconomics tells us that the industry should
be regulated. Besides providing you with a hands-on experience of using the tech-
niques to test interesting hypotheses, Nerlove’s paper has a careful discussion of why
the OLS is an appropriate estimation procedure in this particular application.

1.1 The Classical Linear Regression Model

In this section we present the assumptions that comprise the classical linear regres-
sion model. In the model, the variable in question (called thedependent vari-
able, theregressand, or more generically theleft-hand [-side] variable) is related
to several other variables (called theregressors, the explanatory variables, or
the right-hand [-side] variables). Suppose we observen values for those vari-
ables. Letyi be thei -th observation of the dependent variable in question and let
(xi1, xi2, . . . , xiK ) be thei -th observation of theK regressors. Thesampleor data
is a collection of thosen observations.

The data in economics cannot be generated by experiments (except in experi-
mental economics), so both the dependent and independent variables have to be
treated as random variables, variables whose values are subject to chance. Amodel
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is a set of restrictions on the joint distribution of the dependent and independ-
ent variables. That is, a model is a set of joint distributions satisfying a set of
assumptions. The classical regression model is a set of joint distributions satisfy-
ing Assumptions 1.1–1.4 stated below.

The Linearity Assumption

The first assumption is that the relationship between the dependent variable and the
regressors is linear.

Assumption 1.1 (linearity):

yi = β1xi1 + β2xi2 + · · · + βK xiK + εi (i = 1,2, . . . ,n), (1.1.1)

where β’s are unknown parameters to be estimated, and εi is the unobserved error
term with certain properties to be specified below.

The part of the right-hand side involving the regressors,β1xi1+β2xi2+· · ·+βK xiK ,
is called theregressionor theregression function, and the coefficients (β’s) are
called theregression coefficients. They represent the marginal and separate effects
of the regressors. For example,β2 represents the change in the dependent variable
when the second regressor increases by one unit while other regressors are held
constant. In the language of calculus, this can be expressed as∂yi/∂xi2 = β2. The
linearity implies that the marginal effect does not depend on the level of regressors.
The error term represents the part of the dependent variable left unexplained by the
regressors.

Example 1.1 (consumption function): The simple consumption function
familiar from introductory economics is

CONi = β1+ β2YDi + εi , (1.1.2)

whereCON is consumption andYD is disposable income. If the data are
annual aggregate time-series,CONi andYDi are aggregate consumption and
disposable income for yeari . If the data come from a survey of individual
households,CONi is consumption by thei -th household in the cross-section
sample ofn households. The consumption function can be written as (1.1.1)
by setting yi = CONi , xi1 = 1 (a constant), andxi2 = YDi . The error
term εi represents other variables besides disposable income that influence
consumption. They include those variables — such as financial assets — that
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might be observable but the researcher decided not to include as regressors,
as well as those variables — such as the “mood” of the consumer — that are
hard to measure. When the equation has only one nonconstant regressor, as
here, it is called thesimple regression model.

The linearity assumption is not as restrictive as it might first seem, because the
dependent variable and the regressors can be transformations of the variables in
question. Consider

Example 1.2 (wage equation): A simplified version of the wage equation
routinely estimated in labor economics is

log(WAGEi ) = β1+ β2Si + β3TENUREi + β4EXPRi + εi , (1.1.3)

whereWAGE= the wage rate for the individual,S = education in years,
TENURE= years on the current job, andEXPR= experience in the labor
force (i.e., total number of years to date on all the jobs held currently or pre-
viously by the individual). The wage equation fits the generic format (1.1.1)
with yi = log(WAGEi ). The equation is said to be in thesemi-log form
because only the dependent variable is in logs. The equation is derived from
the following nonlinear relationship between the level of the wage rate and
the regressors:

WAGEi = exp(β1)exp(β2Si )exp(β3TENUREi )exp(β4EXPRi )exp(εi ).

(1.1.4)

By taking logs of both sides of (1.1.4) and noting that log[exp(x)] = x, one
obtains (1.1.3). The coefficients in the semi-log form have the interpretation
of percentage changes, not changes in levels. For example, a value of 0.05
for β2 implies that an additional year of education has the effect of raising
the wage rate by 5 percent. The difference in the interpretation comes about
because the dependent variable is the log wage rate, not the wage rate itself,
and the change in logs equals the percentage change in levels.

Certain other forms of nonlinearities can also be accommodated. Suppose, for
example, the marginal effect of education tapers off as the level of education gets
higher. This can be captured by including in the wage equation the squared term
S2 as an additional regressor in the wage equation. If the coefficient of the squared
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term isβ5, the marginal effect of education is

β2+ 2β5S (= ∂ log(WAGE)/∂S).

If β5 is negative, the marginal effect of education declines with the level of educa-
tion.

There are, of course, cases of genuine nonlinearity. For example, the relation-
ship (1.1.4) could not have been made linear if the error term entered additively
rather than multiplicatively:

WAGEi = exp(β1)exp(β2Si )exp(β3TENUREi )exp(β4EXPRi )+ εi .

Estimation of nonlinear regression equations such as this will be discussed in
Chapter 7.

Matrix Notation

Before stating other assumptions of the classical model, we introduce the vector
and matrix notation. The notation will prove useful for stating other assumptions
precisely and also for deriving the OLS estimator ofβ. Define K -dimensional
(column) vectorsxi andβ as

xi
(K×1)

=


xi1

xi2
...

xiK

 , β
(K×1)

=


β1

β2
...

βK

 . (1.1.5)

By the definition of vector inner products,x′iβ = β1xi1+ β2xi2+ · · · + βK xiK . So
the equations in Assumption 1.1 can be written as

yi = x′iβ + εi (i = 1,2, . . . ,n). (1.1.1′)

Also define

y
(n×1)
=
y1
...

yn

 , ε
(n×1)
=
ε1
...

εn

 , X
(n×K )

=
x′1
...

x′n

 =
x11 . . . x1K
... . . .

...

xn1 . . . xnK

 . (1.1.6)

In the vectors and matrices in (1.1.6), there are as many rows as there are obser-
vations, with the rows corresponding to the observations. For this reasony andX
are sometimes called thedata vector and thedata matrix . Since the number of
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columns ofX equals the number of rows ofβ, X andβ are conformable andXβ is
ann×1 vector. Itsi -th element isx′iβ. Therefore, Assumption 1.1 can be written
compactly as

y
(n×1)
= X

(n×K )
β

(K×1)︸ ︷︷ ︸
(n×1)

+ ε
(n×1)

.

The Strict Exogeneity Assumption

The next assumption of the classical regression model is

Assumption 1.2 (strict exogeneity):

E(εi | X) = 0 (i = 1,2, . . . ,n). (1.1.7)

Here, the expectation (mean) is conditional on the regressors forall observations.
This point may be made more apparent by writing the assumption without using
the data matrix as

E(εi | x1, . . . , xn) = 0 (i = 1,2, . . . ,n).

To state the assumption differently, take, for any given observationi , the joint dis-
tribution of thenK + 1 random variables,f (εi , x1, . . . , xn), and consider the con-
ditional distribution, f (εi | x1, . . . , xn). The conditional mean E(εi | x1, . . . , xn)

is in general a nonlinear function of(x1, . . . , xn). The strict exogeneity assumption
says that this function is a constant of value zero.1

Assuming this constant to be zero is not restrictive if the regressors include a
constant, because the equation can be rewritten so that the conditional mean of the
error term is zero. To see this, suppose that E(εi | X) is µ and xi1 = 1. The
equation can be written as

yi = β1+ β2xi2 + · · · + βK xiK + εi

= (β1+ µ)+ β2xi2 + · · · + βK xiK + (εi − µ).

If we redefineβ1 to beβ1+µ andεi to beεi −µ, the conditional mean of the new
error term is zero. In virtually all applications, the regressors include a constant
term.

1Some authors define the term “strict exogeneity” somewhat differently. For example, in Koopmans and Hood
(1953) and Engle, Hendry, and Richards (1983), the regressors are strictly exogenous ifxi is independent ofεj
for all i, j . This definition is stronger than, but not inconsistent with, our definition of strict exogeneity.
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Example 1.3 (continuation of Example 1.1): For the simple regression
model of Example 1.1, the strict exogeneity assumption can be written as

E(εi | YD1,YD2, . . . ,YDn) = 0.

Sincexi = (1,YDi )
′, you might wish to write the strict exogeneity assump-

tion as

E(εi | 1,YD1,1,YD2, . . . ,1,YDn) = 0.

But since a constant provides no information, the expectation conditional on

(1,YD1,1,YD2, . . . ,1,YDn)

is the same as the expectation conditional on

(YD1,YD2, . . . ,YDn).

Implications of Strict Exogeneity

The strict exogeneity assumption has several implications.

• Theunconditional mean of the error term is zero, i.e.,

E(εi ) = 0 (i = 1,2, . . . ,n). (1.1.8)

This is because, by the Law of Total Expectations from basic probability theory,2

E[E(εi | X)] = E(εi ).

• If the cross moment E(xy) of two random variablesx andy is zero, then we say
thatx is orthogonal to y (or y is orthogonal tox). Under strict exogeneity, the
regressors are orthogonal to the error term forall observations, i.e.,

E(xjkεi ) = 0 (i, j = 1, . . . ,n; k = 1, . . . , K )

or

E(xj ·εi ) =


E(xj 1 εi )

E(xj 2 εi )
...

E(xj K εi )

 = 0
(K×1)

(for all i, j ). (1.1.9)

2The Law of Total Expectations states that E[E(y | x)] = E(y).
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The proof is a good illustration of the use of properties of conditional expecta-
tions and goes as follows.

PROOF. Sincexjk is an element ofX, strict exogeneity implies

E(εi | xjk) = E[E(εi | X) | xjk] = 0 (1.1.10)

by the Law of Iterated Expectations from probability theory.3 It follows from
this that

E(xjkεi ) = E[E(xjkεi | xjk)] (by the Law of Total Expectations)

= E[xjk E(εi | xjk)] (by the linearity of conditional expectations4)

= 0.

The point here is that strict exogeneity requires the regressors be orthogonal not
only to the error term from the same observation (i.e., E(xikεi ) = 0 for all k),
but also to the error term from the other observations (i.e., E(xjkεi ) = 0 for all
k and for j 6= i ).

• Because the mean of the error term is zero, the orthogonality conditions (1.1.9)
are equivalent to zero-correlation conditions. This is because

Cov(εi , xjk) = E(xjkεi )− E(xjk)E(εi ) (by definition of covariance)

= E(xjkεi ) (since E(εi ) = 0, see (1.1.8))

= 0 (by the orthogonality conditions (1.1.9)).

In particular, fori = j , Cov(xik, εi ) = 0. Therefore, strict exogeneity implies
the requirement (familiar to those who have studied econometrics before) that
the regressors be contemporaneously uncorrelated with the error term.

Strict Exogeneity in Time-Series Models

For time-series models wherei is time, the implication (1.1.9) of strict exogene-
ity can be rephrased as: the regressors are orthogonal to the past, current, and
future error terms (or equivalently, the error term is orthogonal to the past, current,
and future regressors). But for most time-series models, this condition (anda for-
tiori strict exogeneity) is not satisfied, so the finite-sample theory based on strict
exogeneity to be developed in this section is rarely applicable in time-series con-

3The Law of Iterated Expectations states that E[E(y | x, z) | x] = E(y | x).
4The linearity of conditional expectations states that E[ f (x)y | x] = f (x)E(y | x).



10 Chapter 1

texts. However, as will be shown in the next chapter, the estimator possesses good
large-sample properties without strict exogeneity.

The clearest example of a failure of strict exogeneity is a model where the
regressor includes thelagged dependent variable. Consider the simplest such
model:

yi = βyi−1 + εi (i = 1,2, . . . ,n). (1.1.11)

This is called thefirst-order autoregressive model(AR(1)). (We will study this
model more fully in Chapter 6.) Suppose, consistent with the spirit of the strict
exogeneity assumption, that the regressor for observationi, yi−1, is orthogonal to
the error term fori so E(yi−1εi ) = 0. Then

E(yi εi ) = E[(βyi−1 + εi )εi ] (by (1.1.11))

= β E(yi−1εi )+ E(ε2
i )

= E(ε2
i ) (since E(yi−1εi ) = 0 by hypothesis).

Therefore, unless the error term is always zero, E(yiεi ) is not zero. Butyi is the
regressor for observationi+1. Thus, the regressor is not orthogonal to the past
error term, which is a violation of strict exogeneity.

Other Assumptions of the Model

The remaining assumptions comprising the classical regression model are the
following.

Assumption 1.3 (no multicollinearity): The rank of the n×K data matrix, X, is
K with probability 1.

Assumption 1.4 (spherical error variance):

(homoskedasticity) E(ε2
i | X) = σ 2 > 0 (i = 1,2, . . . ,n),5 (1.1.12)

(no correlation between observations)

E(εi εj | X) = 0 (i, j = 1,2, . . . ,n; i 6= j ). (1.1.13)

5When a symbol (which here isσ2) is given to a moment (which here is the second moment E(ε2
i | X)), by

implication the moment is assumed to exist and is finite. We will follow this convention for the rest of this book.
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To understand Assumption 1.3, recall from matrix algebra that the rank of a
matrix equals the number of linearly independent columns of the matrix. The
assumption says that none of theK columns of the data matrixX can be expressed
as a linear combination of the other columns ofX. That is,X is of full column
rank . Since theK columns cannot be linearly independent if their dimension is
less thanK , the assumption implies thatn ≥ K , i.e., there must be at least as many
observations as there are regressors. The regressors are said to be(perfectly) mul-
ticollinear if the assumption is not satisfied. It is easy to see in specific applications
when the regressors are multicollinear and what problems arise.

Example 1.4 (continuation of Example 1.2):If no individuals in the sam-
ple ever changed jobs, thenTENUREi = EXPRi for all i , in violation of the
no multicollinearity assumption. There is evidently no way to distinguish the
tenure effect on the wage rate from the experience effect. If we substitute this
equality into the wage equation to eliminateTENUREi , the wage equation
becomes

log(WAGEi ) = β1+ β2Si + (β3+ β4)EXPRi + εi ,

which shows that only the sumβ3 + β4, but notβ3 andβ4 separately, can be
estimated.

The homoskedasticity assumption (1.1.12) says that the conditional second
moment, which in general is a nonlinear function ofX, is a constant. Thanks to
strict exogeneity, this condition can be stated equivalently in more familiar terms.
Consider the conditional variance Var(εi | X). It equals the same constant because

Var(εi | X) ≡ E(ε2
i | X)− E(εi | X)2 (by definition of conditional variance)

= E(ε2
i | X) (since E(εi | X) = 0 by strict exogeneity).

Similarly, (1.1.13) is equivalent to the requirement that

Cov(εi , εj | X) = 0 (i, j = 1,2, . . . ,n; i 6= j ).

That is, in the joint distribution of(εi , εj ) conditional onX, the covariance is zero.
In the context of time-series models, (1.1.13) states that there is noserial correla-
tion in the error term.
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Since the(i, j ) element of then×n matrix εε′ is εi εj , Assumption 1.4 can be
written compactly as

E(εε′ | X) = σ 2In. (1.1.14)

The discussion of the previous paragraph shows that the assumption can also be
written as

Var(ε | X) = σ 2In.

However, (1.1.14) is the preferred expression, because the more convenient mea-
sure of variability is second moments (such as E(ε2

i | X)) rather than variances.
This point will become clearer when we deal with the large sample theory in the
next chapter. Assumption 1.4 is sometimes called thespherical error variance
assumption because then×n matrix of second moments (which are also variances
and covariances) is proportional to the identity matrixIn. This assumption will be
relaxed later in this chapter.

The Classical Regression Model for Random Samples

The sample(y,X) is arandom sampleif {yi , xi } is i.i.d. (independently and iden-
tically distributed) across observations. Since by Assumption 1.1εi is a function
of (yi , xi ) and since(yi , xi ) is independent of(yj , xj ) for j 6= i , (εi , xi ) is inde-
pendent ofxj for j 6= i . So

E(εi | X) = E(εi | xi ),

E(ε2
i | X) = E(ε2

i | xi ),

and E(εi εj | X) = E(εi | xi )E(εj | xj ) (for i 6= j ). (1.1.15)

(Proving the last equality in (1.1.15) is a review question.) Therefore, Assumptions
1.2 and 1.4 reduce to

Assumption 1.2: E(εi | xi ) = 0 (i = 1,2, . . . ,n), (1.1.16)

Assumption 1.4: E(ε2
i | xi ) = σ 2 > 0 (i = 1,2, . . . ,n). (1.1.17)

The implication of the identical distribution aspect of a random sample is that
the joint distribution of(εi , xi ) does not depend oni . So theunconditional second
moment E(ε2

i ) is constant acrossi (this is referred to asunconditional homoske-
dasticity) and the functional form of the conditional second moment E(ε2

i | xi ) is
the same acrossi . However, Assumption 1.4 — that thevalueof the conditional
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second moment is the same acrossi — does not follow. Therefore, Assumption 1.4
remains restrictive for the case of a random sample; without it, the conditional sec-
ond moment E(ε2

i | xi ) can differ acrossi through its possible dependence onxi .
To emphasize the distinction, the restrictions on the conditional second moments,
(1.1.12) and (1.1.17), are referred to asconditional homoskedasticity.

“Fixed” Regressors

We have presented the classical linear regression model, treating the regressors as
random. This is in contrast to the treatment in most textbooks, whereX is assumed
to be “fixed” or deterministic. IfX is fixed, then there is no need to distinguish
between the conditional distribution of the error term,f (εi | x1, . . . , xn), and the
unconditional distribution,f (εi ), so that Assumptions 1.2 and 1.4 can be written as

Assumption 1.2: E(εi ) = 0 (i = 1, . . . ,n), (1.1.18)

Assumption 1.4: E(ε2
i ) = σ 2 (i = 1, . . . ,n);

E(εi εj ) = 0 (i, j = 1, . . . ,n; i 6= j ). (1.1.19)

Although it is clearly inappropriate for a nonexperimental science like economet-
rics, the assumption of fixed regressors remains popular because the regression
model with fixedX can be interpreted as a set of statements conditional onX,
allowing us to dispense with “| X” from the statements such as Assumptions 1.2
and 1.4 of the model.

However, the economy in the notation comes at a price. It is very easy to miss
the point that the error term is being assumed to be uncorrelated with current, past,
and future regressors. Also, the distinction between the unconditional and condi-
tional homoskedasticity gets lost if the regressors are deterministic. Throughout
this book, the regressors are treated as random, and, unless otherwise noted, state-
ments conditional onX are made explicit by inserting “| X.”

Q U E S T I O N S F O R R E V I E W

1. (Change in units in the semi-log form) In the wage equation, (1.1.3), of Exam-
ple 1.2, if WAGEis measured in cents rather than in dollars, what difference
does it make to the equation?Hint: log(x y) = log(x)+ log(y).

2. Prove the last equality in (1.1.15).Hint: E(εi εj | X) = E[εj E(εi | X, εj ) | X].
(εi , xi ) is independent of (εj , x1, . . . , xi−1, xi+1, . . . , xn) for i 6= j .
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3. (Combining linearity and strict exogeneity) Show that Assumptions 1.1 and
1.2 imply

E(yi | X) = x′iβ (i = 1,2, . . . ,n). (1.1.20)

Conversely, show that this assumption implies that there exist error terms that
satisfy those two assumptions.

4. (Normally distributed random sample) Consider a random sample on con-
sumption and disposable income,(CONi ,YDi ) (i = 1,2, . . . ,n). Suppose
the joint distribution of(CONi ,YDi ) (which is the same acrossi because of
the random sample assumption) is normal. Clearly, Assumption 1.3 is satis-
fied; the rank ofX would be less thanK only by pure accident. Show that the
other assumptions, Assumptions 1.1, 1.2, and 1.4, are satisfied.Hint: If two

random variables, y and x, are jointly normally distributed, then the conditional

expectation is linear in x, i.e.,

E(y | x) = β1+ β2x,

and the conditional variance, Var(y | x), does not depend on x. Here, the fact

that the distribution is the same across i is important; if the distribution differed

across i , β1 and β2 could vary across i .

5. (Multicollinearity for the simple regression model) Show that Assumption 1.3
for the simple regression model is that the nonconstant regressor(xi2) is really
nonconstant (i.e.,xi2 6= xj 2 for some pairs of(i, j ), i 6= j , with probability
one).

6. (An exercise in conditional and unconditional expectations) Show that As-
sumptions 1.2 and 1.4 imply

Var(εi ) = σ 2 (i = 1,2, . . . ,n)

and Cov(εi , εj ) = 0 (i 6= j ; i, j = 1,2, . . . n). (∗)

Hint: Strict exogeneity implies E(εi ) = 0. So (∗) is equivalent to

E(ε2
i ) = σ 2 (i = 1,2, . . . ,n)

and E(εi εj ) = 0 (i 6= j ; i, j = 1,2, . . . ,n).
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1.2 The Algebra of Least Squares

This section describes the computational procedure for obtaining the OLS estimate,
b, of the unknown coefficient vectorβ and introduces a few concepts that derive
from b.

OLS Minimizes the Sum of Squared Residuals

Although we do not observe the error term, we can calculate the value implied by
a hypothetical value,̃β, of β as

yi − x′i β̃.

This is called theresidual for observationi . From this, form thesum of squared
residuals(SSR):

SSR(β̃) ≡
n∑

i=1

(yi − x′i β̃)
2 = (y− Xβ̃)′(y− Xβ̃).

This sum is also called theerror sum of squares (ESS)or the residual sum of
squares (RSS). It is a function of̃β because the residual depends on it. TheOLS
estimate, b, of β is theβ̃ that minimizes this function:

b ≡ argmin
β̃

SSR(β̃). (1.2.1)

The relationship amongβ (the unknown coefficient vector),b (the OLS estimate of
it), andβ̃ (a hypothetical value ofβ) is illustrated in Figure 1.1 forK = 1. Because
SSR(β̃) is quadratic iñβ, its graph has the U shape. The value ofβ̃ corresponding
to the bottom isb, the OLS estimate. Since it depends on the sample(y,X), the
OLS estimateb is in general different from the true valueβ; if b equalsβ, it is by
sheer accident.

By having squared residuals in the objective function, this method imposes a
heavy penalty on large residuals; the OLS estimate is chosen to prevent large resid-
uals for a few observations at the expense of tolerating relatively small residuals
for many other observations. We will see in the next section that this particular
criterion brings about some desirable properties for the estimate.
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Figure 1.1: Hypothetical, True, and Estimated Values

Normal Equations

A sure-fire way of solving the minimization problem is to derive the first-order
conditions by setting the partial derivatives equal to zero. To this end we seek a
K -dimensional vector of partial derivatives,∂SSR(β̃)/∂β̃.6 The task is facilitated
by writing SSR(β̃) as

SSR(β̃) = (y− Xβ̃)′(y− Xβ̃) (since thei -th element ofy− Xβ̃ is yi − x′i β̃)

= (y′ − β̃ ′X ′)(y− Xβ̃) (since(Xβ̃)′ = β̃ ′X ′)
= y′y− β̃ ′X ′y− y′Xβ̃ + β̃ ′X ′Xβ̃
= y′y− 2y′Xβ̃ + β̃ ′X ′Xβ̃

(since the scalar̃β
′
X ′y equals its transposey′Xβ̃)

≡ y′y− 2a′β̃ + β̃ ′Aβ̃ with a≡ X ′y andA ≡ X ′X. (1.2.2)

The termy′y does not depend oñβ and so can be ignored in the differentiation of
SSR(β̃). Recalling from matrix algebra that

∂(a′β̃)

∂β̃
= a and

∂(β̃
′
Aβ̃)

∂β̃
= 2Aβ̃ for A symmetric,

6If h : RK → R is a scalar-valued function of aK -dimensional vectorx, the derivative ofh with respect tox is
a K -dimensional vector whosek-th element is∂h(x)/∂xk wherexk is thek-th element ofx. (This K -dimensional
vector is called thegradient.) Here, thex is β̃ and the functionh(x) is SSR(β̃).
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the K -dimensional vector of partial derivatives is

∂SSR(β̃)

∂β̃
= −2a+ 2Aβ̃.

The first-order conditions are obtained by setting this equal to zero. Recalling from
(1.2.2) thata here isX ′y andA is X ′X and rearranging, we can write the first-order
conditions as

X ′X
(K×K )

b
(K×1)

= X ′y. (1.2.3)

Here, we have replaced̃β by b because the OLS estimateb is theβ̃ that satisfies
the first-order conditions. TheseK equations are called thenormal equations.

The vector of residuals evaluated atβ̃ = b,

e
(n×1)
≡ y− Xb, (1.2.4)

is called the vector ofOLS residuals. Its i -th element isei ≡ yi − x′i b.
Rearranging (1.2.3) gives

X ′(y− Xb) = 0 or X ′e= 0 or

1

n

n∑
i=1

xi · ei = 0 or
1

n

n∑
i=1

xi · (yi − x′i b) = 0, (1.2.3′)

which shows that the normal equations can be interpreted as the sample analogue
of the orthogonality conditions E(xi · εi ) = 0. This point will be pursued more
fully in subsequent chapters.

To be sure, the first-order conditions are just a necessary condition for min-
imization, and we have to check the second-order condition to make sure thatb
achieves the minimum, not the maximum. Those who are familiar with the Hessian
of a function of several variables7 can immediately recognize that the second-order
condition is satisfied because (as noted below)X ′X is positive definite. There is,
however, a more direct way to show thatb indeed achieves the minimum. It utilizes
the “add-and-subtract” strategy, which is effective when the objective function is
quadratic, as here. Application of the strategy to the algebra of least squares is left
to you as an analytical exercise.

7TheHessianof h(x) is a square matrix whose(k, `) element is∂2h(x)/∂xk ∂x`.
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Two Expressions for the OLS Estimator

Thus, we have obtained a system ofK linear simultaneous equations inK un-
knowns inb. By Assumption 1.3 (no multicollinearity), the coefficient matrixX ′X
is positive definite (see review question 1 below for a proof ) and hence nonsingular.
So the normal equations can be solved uniquely forb by premultiplying both sides
of (1.2.3) by(X ′X)−1:

b = (X ′X)−1X ′y. (1.2.5)

Viewed as a function of the sample(y,X), (1.2.5) is sometimes called theOLS
estimator. For any given sample(y,X), the value of this function is theOLS
estimate. In this book, as in most other textbooks, the two terms will be used
almost interchangeably.

Since(X ′X)−1X ′y = (X ′X/n)−1X ′y/n, the OLS estimator can also be rewrit-
ten as

b = S−1
xx sxy, (1.2.5′)

where

Sxx = 1

n
X ′X = 1

n

n∑
i=1

xi x′i (sample average ofxi x′i ), (1.2.6a)

sxy = 1

n
X ′y = 1

n

n∑
i=1

xi · yi (sample average ofxi · yi ). (1.2.6b)

The data matrix form (1.2.5) is more convenient for developing the finite-sample
results, while the sample average form (1.2.5′) is the form to be utilized for large-
sample theory.

More Concepts and Algebra

Having derived the OLS estimator of the coefficient vector, we can define a few
related concepts.

• Thefitted value for observationi is defined aŝyi ≡ x′i b. The vector of fitted
value, ŷ, equalsXb. Thus, the vector of OLS residuals can be written ase =
y− ŷ.

• Theprojection matrix P and theannihilator M are defined as

P
(n×n)
≡ X(X ′X)−1X ′, (1.2.7)

M
(n×n)
≡ In − P. (1.2.8)
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They have the following nifty properties (proving them is a review question):

BothP andM are symmetric and idempotent,8 (1.2.9)

PX = X (hence the termprojection matrix), (1.2.10)

MX = 0 (hence the termannihilator ). (1.2.11)

Sincee is the residual vector at̃β = b, the sum of squared OLS residuals,SSR,
equalse′e. It can further be written as

SSR= e′e= ε′Mε. (1.2.12)

(Proving this is a review question.) This expression, relatingSSRto the true
error termε, will be useful later on.

• The OLS estimate ofσ 2 (the variance of the error term), denoteds2, is the sum
of squared residuals divided byn− K :

s2 ≡ SSR

n− K
= e′e

n− K
. (1.2.13)

(The definition presumes thatn > K ; otherwises2 is not well-defined.) As will
be shown in Proposition 1.2 below, dividing the sum of squared residuals by
n− K (called thedegrees of freedom) rather than byn (the sample size) makes
this estimate unbiased forσ 2. The intuitive reason is thatK parameters (β) have
to be estimated before obtaining the residual vectoreused to calculates2. More
specifically,e has to satisfy theK normal equations (1.2.3′), which limits the
variability of the residual.

• The square root ofs2, s, is called thestandard error of the regression(SER)
or standard error of the equation (SEE). It is an estimate of the standard
deviation of the error term.

• Thesampling error is defined asb− β. It too can be related toε as follows.

b− β = (X ′X)−1X ′y− β (by (1.2.5))

= (X ′X)−1X ′(Xβ + ε)− β (sincey = Xβ + ε by Assumption 1.1)

= (X ′X)−1(X ′X)β + (X ′X)−1X ′ε − β
= β + (X ′X)−1X ′ε − β = (X ′X)−1X ′ε. (1.2.14)

8A square matrixA is said to beidempotent if A = A2.



20 Chapter 1

• UncenteredR2. One measure of the variability of the dependent variable is the
sum of squares,

∑
y2

i = y′y. Because the OLS residual is chosen to satisfy the
normal equations, we have the following decomposition ofy′y:

y′y = (ŷ+ e)′(ŷ+ e) (sincee= y− ŷ)

= ŷ′ŷ+ 2ŷ′e+ e′e

= ŷ′ŷ+ 2b′X ′e+ e′e (sinceŷ ≡ Xb)

= ŷ′ŷ+ e′e (sinceX ′e= 0 by the normal equations; see (1.2.3′)).
(1.2.15)

TheuncenteredR2 is defined as

R2
uc ≡ 1− e′e

y′y
. (1.2.16)

Because of the decomposition (1.2.15), this equals

ŷ′ŷ
y′y
.

Since bothŷ′ŷ ande′e are nonnegative, 0≤ R2
uc ≤ 1. Thus, the uncenteredR2

has the interpretation of the fraction of the variation of the dependent variable
that is attributable to the variation in the explanatory variables. The closer the
fitted value tracks the dependent variable, the closer is the uncenteredR2 to one.

• (Centered) R2, the coefficient of determination. If the only regressor is a
constant (so thatK = 1 andxi1 = 1), then it is easy to see from (1.2.5) thatb
equalsȳ, the sample mean of the dependent variable, which means thatŷi = ȳ
for all i , ŷ′ŷ in (1.2.15) equalsnȳ2, ande′eequals

∑
i (yi − ȳ)2. If the regressors

also include nonconstant variables, then it can be shown (the proof is left as an
analytical exercise) that

∑
i (yi − ȳ)2 is decomposed as

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2+
n∑

i=1

e2
i with ȳ ≡ 1

n

n∑
i=1

yi . (1.2.17)

Thecoefficient of determination, R2, is defined as

R2 ≡ 1−
∑n

i=1 e2
i∑n

i=1(yi − ȳ)2
. (1.2.18)
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Because of the decomposition (1.2.17), thisR2 equals∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

.

Therefore, provided that the regressors include a constant so that the decompos-
ition (1.2.17) is valid, 0≤ R2 ≤ 1. Thus, thisR2 as defined in (1.2.18) is a
measure of the explanatory power of the nonconstant regressors.

If the regressors do not include a constant but (as some regression software
packages do) you nevertheless calculateR2 by the formula (1.2.18), then theR2

can be negative. This is because, without the benefit of an intercept, the regres-
sion could do worse than the sample mean in terms of tracking the dependent
variable. On the other hand, some other regression packages (notably STATA)
switch to the formula (1.2.16) for theR2 when a constant is not included, in
order to avoid negative values for theR2. This is a mixed blessing. Suppose
that the regressors do not include a constant but that a linear combination of
the regressors equals a constant. This occurs if, for example, the intercept is
replaced by seasonal dummies.9 The regression is essentially the same when one
of the regressors in the linear combination is replaced by a constant. Indeed, one
should obtain the same vector of fitted values. But if the formula for theR2 is
(1.2.16) for regressions without a constant and (1.2.18) for those with a constant,
the calculatedR2 declines (see Review Question 7 below) after the replacement
by a constant.

Influential Analysis (optional)

Since the method of least squares seeks to prevent a few large residuals at the
expense of incurring many relatively small residuals, only a few observations can
be extremely influential in the sense that dropping them from the sample changes
some elements ofb substantially. There is a systematic way to find thoseinfluen-
tial observations.10 Let b(i ) be the OLS estimate ofβ that would be obtained if
OLS were used on a sample from which thei -th observation was omitted. The key
equation is

b(i ) − b = −
( 1

1− pi

)
(X ′X)−1xi ·ei , (1.2.19)

9Dummy variables will be introduced in the empirical exercise for this chapter.
10See Krasker, Kuh, and Welsch (1983) for more details.
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wherexi as before is thei -th row of X, ei is the OLS residual for observationi ,
and pi is defined as

pi ≡ x′i (X
′X)−1xi , (1.2.20)

which is thei -th diagonal element of the projection matrixP. (Proving (1.2.19)
would be a good exercise in matrix algebra, but we will not do it here.) It is easy
to show (see Review Question 7 of Section 1.3) that

0≤ pi ≤ 1 and
n∑

i=1

pi = K . (1.2.21)

So pi equalsK/n on average.
To illustrate the use of (1.2.19) in a specific example, consider the relationship

between equipment investment and economic growth for the world’s poorest coun-
tries between 1960 and 1985. Figure 1.2 plots the average annual GDP-per-worker
growth between 1960 and 1985 against the ratio of equipment investment to GDP
over the same period for thirteen countries whose GDP per worker in 1965 was less
than 10 percent of that of the United States.11 It is clear visually from the plot that
the position of the estimated regression line would depend very much on the single
outlier (Botswana). Indeed, if Botswana is dropped from the sample, the estimated
slope coefficient drops from 0.37 to 0.058. In the present case of simple regres-
sion, it is easy to spot outliers by visually inspecting the plot such as Figure 1.2.
This strategy would not work if there were more than one nonconstant regressor.
Analysis based on formula (1.2.19) is not restricted to simple regressions. Table
1.1 displays the data along with the OLS residuals, the values ofpi , and (1.2.19)
for each observation. Botswana’spi of 0.7196 is well above the average of 0.154
(= K/n = 2/13) and is highlyinfluential , as the last two columns of the table
indicate. Note that we could not have detected the influential observation by look-
ing at the residuals, which is not surprising because the algebra of least squares is
designed to avoid large residuals at the expense of many small residuals for other
observations.

What should be done with influential observations? It depends. If the influ-
ential observations satisfy the regression model, they provide valuable information
about the regression function unavailable from the rest of the sample and should
definitely be kept in the sample. But more probable is that the influential observa-
tions are atypical of the rest of the sample because they do not satisfy the model.

11The data are from the Penn World Table, reprinted in DeLong and Summers (1991). To their credit, their
analysis is based on the whole sample of sixty-one countries.
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Figure 1.2: Equipment Investment and Growth

In this case they should definitely be dropped from the sample. For the exam-
ple just examined, there was a worldwide growth in the demand for diamonds,
Botswana’s main export, and production of diamonds requires heavy investment
in drilling equipment. If the reason to expect an association between growth and
equipment investment is the beneficial effect on productivity of the introduction of
new technologies through equipment, then Botswana, whose high GDP growth is
demand-driven, should be dropped from the sample.

A Note on the Computation of OLS Estimates 12

So far, we have focused on the conceptual aspects of the algebra of least squares.
But for applied researchers who actually calculate OLS estimates using digital
computers, it is important to be aware of a certain aspect of digital computing
in order to avoid the risk of obtaining unreliable estimates without knowing it. The
source of a potential problem is that the computer approximates real numbers by
so-calledfloating-point numbers. When an arithmetic operation involves both
very large numbers and very small numbers, floating-point calculation can pro-
duce inaccurate results. This is relevant in the computation of OLS estimates when
the regressors greatly differ in magnitude. For example, one of the regressors may
be the interest rate stated as a fraction, and another may be U.S. GDP in dollars.
The matrixX ′X will then contain both very small and very large numbers, and the
arithmetic operation of inverting this matrix by the digital computer will produce
unreliable results.

12A fuller treatment of this topic can be found in Section 1.5 of Davidson and MacKinnon (1993).



Table 1.1: Influential Analysis

Country
GDP/worker

growth
Equipment/

GDP
Residual pi

(1.2.19)
for β1

(1.2.19)
for β2

Botswana 0.0676 0.1310 0.0119 0.7196 0.0104 −0.3124
Cameroon 0.0458 0.0415 0.0233 0.0773 −0.0021 0.0045
Ethiopia 0.0094 0.0212 −0.0056 0.1193 0.0010 −0.0119
India 0.0115 0.0278 −0.0059 0.0980 0.0009 −0.0087
Indonesia 0.0345 0.0221 0.0192 0.1160 −0.0034 0.0394
Ivory Coast 0.0278 0.0243 0.0117 0.1084 −0.0019 0.0213
Kenya 0.0146 0.0462 −0.0096 0.0775 0.0007 0.0023
Madagascar −0.0102 0.0219 −0.0254 0.1167 0.0045 −0.0527
Malawi 0.0153 0.0361 −0.0052 0.0817 0.0006 −0.0036
Mali 0.0044 0.0433 −0.0188 0.0769 0.0016 −0.0006
Pakistan 0.0295 0.0263 0.0126 0.1022 −0.0020 0.0205
Tanzania 0.0184 0.0860 −0.0206 0.2281 −0.0021 0.0952
Thailand 0.0341 0.0395 0.0123 0.0784 −0.0012 0.0047
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A simple solution to this problem is to choose the units of measurement so that
the regressors are similar in magnitude. For example, state the interest rate in per-
cents and U.S. GDP in trillion dollars. This sort of care would prevent the problem
most of the time. A more systematic transformation of theX matrix is to subtract
the sample means of all regressors and divide by the sample standard deviations
before formingX ′X (and adjust the OLS estimates to undo the transformation).
Most OLS programs (such as TSP) take a more sophisticated transformation of the
X matrix (called theQR decomposition) to produce accurate results.

Q U E S T I O N S F O R R E V I E W

1. Prove thatX ′X is positive definite ifX is of full column rank. Hint: What

needs to be shown is that c′X ′Xc > 0 for c 6= 0. Define z ≡ Xc. Then

c′X ′Xc = z′z=∑K
k=1 z2

i . If X is of full column rank, then z 6= 0 for any c 6= 0.

2. Verify that X ′X/n = 1
n

∑
i xi x′i andX ′y/n = 1

n

∑
i xi · yi as in (1.2.6).Hint:

The (k, `) element of X ′X is
∑

i xik xi`.

3. (OLS estimator for the simple regression model) In the simple regression
model,K = 2 andxi1 = 1. Show that

Sxx =
[

1 x̄2

x̄2
1
n

∑n
i=1 x2

i2

]
, sxy =

[
ȳ

1
n

∑n
i=1 xi2yi

]

where

ȳ ≡ 1

n

n∑
i=1

yi and x̄2 ≡ 1

n

n∑
i=1

xi2.

Show that

b2 =
1
n

∑n
i=1(xi2 − x̄2)(yi − ȳ)

1
n

∑n
i=1(xi2 − x̄2)2

and b1 = ȳ− x̄2b2.

(You may recognize the denominator of the expression forb2 as the sample
variance of the nonconstant regressor and the numerator as the sample covar-
iance between the nonconstant regressor and the dependent variable.)Hint:

1

n

n∑
i=1

x2
i2 − (x̄2)

2 = 1

n

n∑
i=1

(xi2 − x̄2)
2
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and

1

n

n∑
i=1

xi2 yi − x̄2 ȳ = 1

n

n∑
i=1

(xi2 − x̄2)(yi − ȳ).

You can take (1.2.5′) and use the brute force of matrix inversion. Alternatively,

write down the two normal equations. The first normal equation is b1 = ȳ−x̄2b2.

Substitute this into the second normal equation to eliminate b1 and then solve

for b2.

4. Prove (1.2.9)–(1.2.11).Hint: They should easily follow from the definition of P
and M .

5. (Matrix algebra of fitted values and residuals) Show the following:

(a) ŷ = Py, e= My = Mε. Hint: Use (1.2.5).

(b) (1.2.12), namely,SSR= ε′Mε.

6. (Change in units andR2) Does a change in the unit of measurement for the
dependent variable changeR2? A change in the unit of measurement for
the regressors?Hint: Check whether the change affects the denominator and

the numerator in the definition for R2.

7. (Relation betweenR2
uc andR2) Show that

1− R2 =
(

1+ n · ȳ2∑n
i=1(yi − ȳ)2

)
(1− R2

uc).

Hint: Use (1.2.16), (1.2.18), and the identity
∑

i (yi − ȳ)2 =∑i y2
i − n · ȳ2.

8. Show that

R2
uc =

y′Py
y′y

.

9. (Computation of the statistics) Verify thatb, SSR, s2, andR2 can be calculated
from the following sample averages:Sxx, sxy, y′y/n, and ȳ. (If the regressors
include a constant, then̄y is the element ofsxy corresponding to the constant.)
Therefore, those sample averages need to be computed just once in order to
obtain the regression coefficients and related statistics.
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1.3 Finite-Sample Properties of OLS

Having derived the OLS estimator, we now examine its finite-sample properties,
namely, the characteristics of the distribution of the estimator that are valid for any
given sample sizen.

Finite-Sample Distribution of bbb
Proposition 1.1 (finite-sample properties of the OLS estimator ofβ):

(a) (unbiasedness) Under Assumptions 1.1–1.3, E(b | X) = β.

(b) (expression for the variance) Under Assumptions 1.1–1.4, Var(b | X) = σ 2 ·
(X ′X)−1.

(c) (Gauss-Markov Theorem) Under Assumptions 1.1–1.4, the OLS estimator is
efficient in the class of linear unbiased estimators. That is, for any unbiased
estimator β̂ that is linear in y, Var(β̂ | X) ≥ Var(b | X) in the matrix sense.13

(d) Under Assumptions 1.1–1.4, Cov(b,e | X) = 0, where e≡ y− Xb.

Before plunging into the proof, let us be clear about what this proposition means.

• The matrix inequality in part (c) says that theK × K matrix Var(β̂ | X) −
Var(b | X) is positive semidefinite, so

a′[Var(β̂ | X)− Var(b | X)]a≥ 0 or a′ Var(β̂ | X)a≥ a′ Var(b | X)a

for any K -dimensional vectora. In particular, consider a special vector whose
elements are all 0 except for thek-th element, which is 1. For this particulara,
the quadratic forma′Aa picks up the(k, k) element ofA. But the(k, k) element
of Var(β̂ | X), for example, is Var(β̂k | X) whereβ̂k is thek-th element of̂β.
Thus the matrix inequality in (c) implies

Var(β̂k | X) ≥ Var(bk | X) (k = 1,2, . . . , K ). (1.3.1)

That is, for any regression coefficient, the variance of the OLS estimator is no
larger than that of any other linear unbiased estimator.

13Let A andB be two square matrices of the same size. We say thatA ≥ B if A − B is positive semidefinite.
A K × K matrix C is said to be positive semidefinite (or nonnegative definite) ifx′Cx ≥ 0 for all K -dimensional
vectorsx.
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• As clear from (1.2.5), the OLS estimator is linear iny. There are many other
estimators ofβ that are linear and unbiased (you will be asked to provide one
in a review question below). The Gauss-Markov Theorem says that the OLS
estimator isefficient in the sense that its conditional variance matrix Var(b | X)
is smallest among linear unbiased estimators. For this reason the OLS estimator
is called the Best Linear Unbiased Estimator (BLUE ).

• The OLS estimatorb is a function of the sample(y,X). Since(y,X) are random,
so isb. Now imagine that we fixX at some given value, calculateb for all
samples corresponding to all possible realizations ofy, and take the average of
b (the Monte Carlo exercise to this chapter will ask you to do this). This average
is the (population) conditional mean E(b | X). Part (a) (unbiasedness) says that
this average equals the true valueβ.

• There is another notion of unbiasedness that is weaker than the unbiasedness of
part (a). By the Law of Total Expectations, E[E(b | X)] = E(b). So (a) implies

E(b) = β. (1.3.2)

This says: if we calculatedb for all possible different samples, differing not
only in y but also inX, the average would be the true value. This unconditional
statement is probably more relevant in economics because samples do differ in
bothy andX. The import of the conditional statement (a) is that it implies the
unconditional statement (1.3.2), which is more relevant.

• The same holds for the conditional statement (c) about the variance. A review
question below asks you to show that statements (a) and (b) imply

Var(β̂) ≥ Var(b) (1.3.3)

whereβ̂ is any linear unbiased estimator (so that E(β̂ | X) = β).
We will now go through the proof of this important result. The proof may look

lengthy; if so, it is only because it records every step, however easy. In the first
reading, you can skip the proof of part (c). Proof of (d) is a review question.

PROOF.

(a) (Proof that E(b | X) = β) E(b − β | X) = 0 whenever E(b | X) = β.
So we prove the former. By the expression for the sampling error (1.2.14),
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b− β = Aε whereA here is(X ′X)−1X ′. So

E(b− β | X) = E(Aε | X) = A E(ε | X).

Here, the second equality holds by the linearity of conditional expectations;A
is a function ofX and so can be treated as if nonrandom. Since E(ε | X) = 0,
the last expression is zero.

(b) (Proof that Var(b | X) = σ 2·(X ′X)−1)

Var(b | X) = Var(b− β | X) (sinceβ is not random)

= Var(Aε | X) (by (1.2.14) andA ≡ (X ′X)−1X ′)

= A Var(ε | X)A ′ (sinceA is a function ofX)

= A E(εε′ | X)A ′ (by Assumption 1.2)

= A(σ 2In)A ′ (by Assumption 1.4, see (1.1.14))

= σ 2AA ′

= σ 2 · (X ′X)−1 (sinceAA ′ = (X ′X)−1X ′X(X ′X)−1 = (X ′X)−1).

(c) (Gauss-Markov) Sincêβ is linear iny, it can be written aŝβ = Cy for some
matrix C, which possibly is a function ofX. Let D ≡ C − A or C = D + A
whereA ≡ (X ′X)−1X ′. Then

β̂ = (D+ A)y

= Dy+ Ay

= D(Xβ + ε)+ b (sincey = Xβ + ε andAy = (X ′X)−1X ′y = b)

= DXβ + Dε + b.

Taking the conditional expectation of both sides, we obtain

E(β̂ | X) = DXβ + E(Dε | X)+ E(b | X).

Since bothb and β̂ are unbiased and since E(Dε | X) = D E(ε | X) = 0, it
follows thatDXβ = 0. For this to be true for any givenβ, it is necessary that
DX = 0. Soβ̂ = Dε + b and

β̂ − β = Dε + (b− β)
= (D+ A)ε (by (1.2.14)).
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So

Var(β̂ | X) = Var(β̂ − β | X)
= Var[(D+ A)ε | X]
= (D+ A)Var(ε | X)(D′ + A ′)

(since bothD andA are functions ofX)

= σ 2 · (D+ A)(D′ + A ′) (since Var(ε | X) = σ 2In)

= σ 2 · (DD′ + AD ′ + DA ′ + AA ′).

But DA ′ = DX(X ′X)−1 = 0 sinceDX = 0. Also,AA ′ = (X ′X)−1 as shown in
(b). So

Var(β̂ | X) = σ 2 · [DD′ + (X ′X)−1]
≥ σ 2 · (X ′X)−1 (sinceDD′ is positive semidefinite)

= Var(b | X) (by (b)).

It should be emphasized that the strict exogeneity assumption (Assumption
1.2) is critical for proving unbiasedness. Anything short of strict exogeneity will
not do. For example, it is not enough to assume that E(εi | xi ) = 0 for all i or
that E(xi ·εi ) = 0 for all i . We noted in Section 1.1 that most time-series models
do not satisfy strict exogeneity even if they satisfy weaker conditions such as the
orthogonality condition E(xi ·εi ) = 0. It follows that for those models the OLS
estimator is not unbiased.

Finite-Sample Properties of s2

We defined the OLS estimator ofσ 2 in (1.2.13). It, too, is unbiased.

Proposition 1.2 (Unbiasedness ofs2): Under Assumptions 1.1–1.4, E(s2 | X) =
σ 2 (and hence E(s2) = σ 2), provided n > K (so that s2 is well-defined).

We can prove this proposition easily by the use of the trace operator.14

PROOF. Sinces2 = e′e/(n− K ), the proof amounts to showing that E(e′e | X) =
(n − K )σ 2. As shown in (1.2.12),e′e = ε′Mε whereM is the annihilator. The
proof consists of proving two properties: (1) E(ε′Mε | X) = σ 2· trace(M ), and
(2) trace(M ) = n− K .

14Thetrace of a square matrixA is the sum of the diagonal elements ofA: trace(A) =∑i aii .



Finite-Sample Properties of OLS 31

(1) (Proof that E(ε′Mε | X) = σ 2· trace(M )) Sinceε′Mε =∑n
i=1

∑n
j=1 mij εi εj

(this is just writing out the quadratic formε′Mε), we have

E(ε′Mε | X) =
n∑

i=1

n∑
j=1

mij E(εi εj | X) (becausemij ’s are functions ofX,

E(mij εi εj | X) = mij E(εi εj | X))

=
n∑

i=1

mii σ
2

(since E(εi εj | X) = 0 for i 6= j by Assumption 1.4)

= σ 2
n∑

i=1

mii

= σ 2 · trace(M ).

(2) (Proof that trace(M ) = n− K )

trace(M ) = trace(In − P) (sinceM ≡ In − P; see (1.2.8))

= trace(In)− trace(P) (fact: the trace operator is linear)

= n− trace(P),

and

trace(P) = trace[X(X ′X)−1X ′] (sinceP≡ X(X ′X)−1X ′; see (1.2.7))

= trace[(X ′X)−1X ′X] (fact: trace(AB) = trace(BA))

= trace(I K ) = K .

So trace(M ) = n− K .

Estimate of Var(bbb | XXX)
If s2 is the estimate ofσ 2, a natural estimate of Var(b | X) = σ 2·(X ′X)−1 is

\Var(b | X) ≡ s2·(X ′X)−1. (1.3.4)

This is one of the statistics included in the computer printout of any OLS software
package.

Q U E S T I O N S F O R R E V I E W

1. (Role of the no-multicollinearity assumption) In Propositions 1.1 and 1.2,
where did we use Assumption 1.3 that rank(X) = K? Hint: We need the

no-multicollinearity condition to make sure X ′X is invertible.
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2. (Example of a linear estimator) For the consumption function example in
Example 1.1, propose a linear and unbiased estimator ofβ2 that is different
from the OLS estimator.Hint: How about β̂2 = (CON2−CON1)/(YD2−YD1)?

Is it linear in (CON1, . . . ,CONn)? Is it unbiased in the sense that E(β̂2 |
YD1, . . . ,YDn) = β2?

3. (What Gauss-Markov does not mean) Under Assumptions 1.1–1.4, does there
exist a linear, but not necessarily unbiased, estimator ofβ that has a variance
smaller than that of the OLS estimator? If so, how small can the variance be?
Hint: If an estimator of β is a constant, then the estimator is trivially linear in y.

4. (Gauss-Markov for Unconditional Variance)

(a) Prove: Var(β̂) = E[Var(β̂ | X)] + Var[E(β̂ | X)]. Hint: By definition,

Var(β̂ | X) ≡ E
[(
β̂ − E(β̂ | X))(β̂ − E(β̂ | X))′ | X]

and

Var[E(β̂ | X)] ≡ E
{[E(β̂ | X)− E(β̂)][E(β̂ | X)− E(β̂)]′}.

Use the add-and-subtract strategy: take β̂−E(β̂ | X) and add and subtract

E(β̂).

(b) Prove (1.3.3).Hint: If Var(β̂ | X) ≥ Var(b | X), then E[Var(β̂ | X)] ≥
E[Var(b | X)]

5. Propose an unbiased estimator ofσ 2 if you had data onε. Hint: How about

ε′ε/n? Is it unbiased?

6. Prove part (d) of Proposition 1.1.Hint: By definition,

Cov(b,e | X) ≡ E
{
[b − E(b | X)][e− E(e | X)]′ ∣∣ X

}
.

Since E(b | X) = β, we have b− E(b | X) = Aε where A here is (X ′X)−1X ′.
Use Mε = e (see Review Question 5 to Section 1.2) to show that e− E(e |
X) = Mε. E(Aεε′M | X) = A E(εε′ | X)M since both A and M are functions

of X. Finally, use MX = 0 (see (1.2.11)).

7. Prove (1.2.21).Hint: Since P is positive semidefinite, its diagonal elements are

nonnegative. Note that
∑n

i=1 pi = trace(P).
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1.4 Hypothesis Testing under Normality

Very often, the economic theory that motivated the regression equation also speci-
fies the values that the regression coefficients should take. Suppose that the under-
lying theory implies the restriction thatβ2 equals 1. Although Proposition 1.1
guarantees that, on average,b2 (the OLS estimate ofβ2) equals 1 if the restriction
is true,b2 may not be exactly equal to 1 for a particular sample at hand. Obviously,
we cannot conclude that the restriction is false just because the estimateb2 differs
from 1. In order for us to decide whether the sampling errorb2 − 1 is “too large”
for the restriction to be true, we need to construct from the sampling error some
test statistic whose probability distribution is known given the truth of the hypoth-
esis. It might appear that doing so requires one to specify the joint distribution of
(X, ε) because, as is clear from (1.2.14), the sampling error is a function of(X, ε).
A surprising fact about the theory of hypothesis testing to be presented in this sec-
tion is that the distribution can be derived without specifying the joint distribution
when the conditional distribution ofε conditional onX is normal; there is no need
to specify the distribution ofX.

In the language of hypothesis testing, the restriction to be tested (such as
“β2 = 1”) is called thenull hypothesis (or simply thenull ). It is a restriction
on themaintained hypothesis, a set of assumptions which, combined with the
null, produces some test statistic with a known distribution. For the present case
of testing hypothesis about regression coefficients, only the normality assumption
about the conditional distribution ofε needs to be added to the classical regression
model (Assumptions 1.1–1.4) to form the maintained hypothesis (as just noted,
there is no need to specify the joint distribution of(X, ε)). Sometimes the main-
tained hypothesis is somewhat loosely referred to as “the model.” We say that the
model iscorrectly specified if the maintained hypothesis is true. Although too
large a value of the test statistic is interpreted as a failure of the null, the interpreta-
tion is valid only as long as the model is correctly specified. It is possible that the
test statistic does not have the supposed distribution when the null is true but the
model is false.

Normally Distributed Error Terms

In many applications, the error term consists of many miscellaneous factors not
captured by the regressors. The Central Limit Theorem suggests that the error
term has a normal distribution. In other applications, the error term is due to
errors in measuring the dependent variable. It is known that very often measure-
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ment errors are normally distributed (in fact, the normal distribution was originally
developed for measurement errors). It is therefore worth entertaining the normality
assumption:

Assumption 1.5 (normality of the error term): The distribution of ε conditional
on X is jointly normal.

Recall from probability theory that the normal distribution has several convenient
features:

• The distribution depends only on the mean and the variance. Thus, once the
mean and the variance are known, you can write down the density function.
If the distribution conditional onX is normal, the mean and the variance can
depend onX. It follows that, if the distribution conditional onX is normal and
if neither the conditional mean nor the conditional variance depends onX, then
the marginal (i.e., unconditional) distribution is the same normal distribution.

• In general, if two random variables are independent, then they are uncorrelated,
but the converse is not true. However, if two random variables are joint nor-
mal, the converse is also true, so that independence and a lack of correlation
are equivalent. This carries over to conditional distributions: if two random
variables are joint normal and uncorrelated conditional onX, then they are inde-
pendent conditional onX.

• A linear function of random variables that are jointly normally distributed is
itself normally distributed. This also carries over to conditional distributions. If
the distribution ofε conditional onX is normal, thenAε, where the elements of
matrix A are functions ofX, is normal conditional onX.

It is thanks to these features of normality that Assumption 1.5 delivers the following
properties to be exploited in the derivation of test statistics:

• The mean and the variance of the distribution ofε conditional onX are already
specified in Assumptions 1.2 and 1.4. Therefore, Assumption 1.5 together with
Assumptions 1.2 and 1.4 implies that the distribution ofε conditional onX is
N(0, σ 2 In):

ε | X ∼ N(0, σ 2 In). (1.4.1)

Thus, the distribution ofε conditional onX does not depend onX. It then
follows thatε andX are independent. Therefore, in particular, the marginal or
unconditional distribution ofε is N(0, σ 2 In).
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• We know from (1.2.14) that the sampling errorb − β is linear inε given X.
Sinceε is normal givenX, so is the sampling error. Its mean and variance are
given by parts (a) and (b) of Proposition 1.1. Thus, under Assumptions 1.1–1.5,

(b− β) | X ∼ N(0, σ 2·(X ′X)−1). (1.4.2)

Testing Hypotheses about Individual Regression Coefficients

The type of hypothesis we first consider is about thek-th coefficient

H0 : βk = βk.

Here,βk is some known value specified by the null hypothesis. We wish to test this
null against the alternative hypothesis H1 : βk 6= βk, at a significance level ofα.
Looking at thek-th component of (1.4.2) and imposing the restriction of the null,
we obtain

(bk − βk)
∣∣ X ∼ N

(
0, σ 2 · ((X ′X)−1

)
kk

)
,

where
(
(X ′X)−1

)
kk

is the(k, k) element of(X ′X)−1. So if we define the ratiozk by
dividing bk − βk by its standard deviation

zk ≡ bk − βk√
σ 2 · ((X ′X)−1

)
kk

, (1.4.3)

then the distribution ofzk is N(0,1) (the standard normal distribution).
Suppose for a second thatσ 2 is known. Then the statisticzk has some desir-

able properties as a test statistic. First, its value can be calculated from the sample.
Second, its distribution conditional onX does not depend onX (which should not
be confused with the fact that thevalue of zk depends onX). So zk and X are
independently distributed, and, regardless of the value ofX, the distribution ofzk

is the same as its unconditional distribution. This is convenient because different
samples differ not only iny but also inX. Third, the distribution is known. In
particular, it does not depend on unknown parameters (such asβ). (If the distri-
bution of a statistic depends on unknown parameters, those parameters are called
nuisance parameters.) Using this statistic, we can determine whether or not the
sampling errorbk−βk is too large: it is too large if the test statistic takes on a value
that is surprising for a realization from the distribution.

If we do not know the true value ofσ 2, a natural idea is to replace the nuisance
parameterσ 2 by its OLS estimates2. The statistic after the substitution ofs2 for
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σ 2 is called thet-ratio or the t-value. The denominator of this statistic is called
thestandard error of the OLS estimate ofβk and is sometimes written asSE(bk):

SE(bk) ≡
√

s2 · ((X ′X)−1
)

kk
=
√
(k, k) element of \Var(b | X) in (1.3.4). (1.4.4)

Sinces2, being a function of the sample, is a random variable, this substitution
changes the distribution of the statistic, but fortunately the changed distribution,
too, is known and depends on neither nuisance parameters norX.

Proposition 1.3 (distribution of the t-ratio): Suppose Assumptions 1.1–1.5 hold.
Under the null hypothesis H0 : βk = βk, the t-ratio defined as

tk ≡ bk − βk

SE(bk)
≡ bk − βk√

s2 · ((X ′X)−1
)

kk

(1.4.5)

is distributed as t (n− K ) (the t distribution with n− K degrees of freedom).

PROOF. We can write

tk = bk − βk√
σ 2 · ((X ′X)−1

)
kk

·
√
σ 2

s2
= zk√

s2/σ 2

= zk√
e′e/(n−K )

σ2

= zk√
q

n−K

,

whereq ≡ e′e/σ 2 to reflect the substitution ofs2 for σ 2. We have already shown
thatzk is N(0,1). We will show:

(1) q | X ∼ χ2(n− K ),

(2) two random variableszk andq are independent conditional onX.

Then, by the definition of thet distribution, the ratio ofzk to
√

q/(n− K ) is dis-
tributed ast with n− K degrees of freedom,15 and we are done.

(1) Sincee′e= ε′Mε from (1.2.12), we have

q = e′e
σ 2
= ε′

σ
M
ε

σ
.

15Fact: Ifx ∼ N(0,1), y ∼ χ2(m) and ifx andy are independent, then the ratiox/
√

y/m has thet distribution
with m degrees of freedom.
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The middle matrixM , being the annihilator, is idempotent. Also,ε/σ | X ∼
N(0, In) by (1.4.1). Therefore, this quadratic form is distributed asχ2 with
degrees of freedom equal to rank(M ).16 But rank(M ) = trace(M ), becauseM
is idempotent.17 We have already shown in the proof of Proposition 1.2 that
trace(M ) = n− K . Soq | X ∼ χ2(n− K ).

(2) Bothb ande are linear functions ofε (by (1.2.14) and the fact thate= Mε),
so they are jointly normal conditional onX. Also, they are uncorrelated con-
ditional onX (see part (d) of Proposition 1.1). Sob ande are independently
distributed conditional onX. But zk is a function ofb andq is a function ofe.
Sozk andq are independently distributed conditional onX.18

Decision Rule for the t-Test

The test of the null hypothesis based on thet-ratio is called thet-test and proceeds
as follows:

Step 1: Given the hypothesized value,βk, of βk, form thet-ratio as in (1.4.5). Too
large a deviation oftk from 0 is a sign of the failure of the null hypothesis.
The next step specifies how large is too large.

Step 2: Go to thet-table (most statistics and econometrics textbooks include thet-
table) and look up the entry forn−K degrees of freedom. Find thecritical
value, tα/2(n − K ), such that the area in thet distribution to the right of
tα/2(n − K ) is α/2, as illustrated in Figure 1.3. (Ifn − K = 30 and
α = 5%, for example,tα/2(n− K ) = 2.042.) Then, since thet distribution
is symmetric around 0,

Prob
(−tα/2(n− K ) < t < tα/2(n− K )

) = 1− α.

Step 3: Accept H0 if −tα/2(n− K ) < tk < tα/2(n− K ) (that is, if |tk| < tα/2(n−
K )), wheretk is thet-ratio fromStep 1. Reject H0 otherwise. Sincetk ∼
t (n − K ) under H0, the probability of rejecting H0 when H0 is true isα.
So the size (significance level) of the test is indeedα.

A convenient feature of thet-test is that the critical value does not depend on
X; there is no need to calculate critical values for each sample.

16Fact: Ifx ∼ N(0, In) andA is idempotent, thenx′Ax has a chi-squared distribution with degrees of freedom
equal to the rank ofA.

17Fact: IfA is idempotent, then rank(A) = trace(A).
18Fact: Ifx andy are independently distributed, then so aref (x) andg(y).
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Figure 1.3: t Distribution

Confidence Interval

Step 3can also be stated in terms ofbk andSE(bk). Sincetk is as in (1.4.5), you
accept H0 whenever

−tα/2(n− K ) <
bk − βk

SE(bk)
< tα/2(n− K )

or

bk − SE(bk) · tα/2(n− K ) < βk < bk + SE(bk) · tα/2(n− K ).

Therefore, we accept if and only if the hypothesized valueβk falls in the interval:

[bk − SE(bk) · tα/2(n− K ),bk + SE(bk) · tα/2(n− K )]. (1.4.6)

This interval is called thelevel 1− α confidence interval. It is narrower the
smaller the standard error. Thus, the smallness of the standard error is a measure
of the estimator’s precision.

p-Value

The decision rule of thet-test can also be stated using thep-value.

Step 1: Same as above.
Step 2: Rather than finding the critical valuetα/2(n− K ), calculate

p = Prob(t > |tk|)× 2.
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Since thet distribution is symmetric around 0, Prob(t > |tk|) = Prob(t <
−|tk|), so

Prob(−|tk| < t < |tk|) = 1− p. (1.4.7)

Step 3: Accept H0 if p > α. Reject otherwise.

To see the equivalence of the two decision rules, one based on the critical values
such astα/2(n − K ) and the other based on thep-value, refer to Figure 1.3. If
Prob(t > |tk|) is greater thanα/2 (as in the figure), that is, if thep-value is more
thanα, then|tk|must be to the left oftα/2(n− K ). This means fromStep 3that the
null hypothesis is not rejected. Thus, whenp is small, thet-ratio is surprisingly
large for a random variable from thet distribution. The smaller thep, the stronger
the rejection.

Examples of thet-test can be found in Section 1.7.

Linear Hypotheses

The null hypothesis we wish to test may not be a restriction about individual regres-
sion coefficients of the maintained hypothesis; it is often about linear combinations
of them written as a system of linear equations:

H0 : Rβ = r , (1.4.8)

where values ofR andr are known and specified by the hypothesis. We denote the
number of equations, which is the dimension ofr , by #r . SoR is #r × K . These
#r equations are restrictions on the coefficients in the maintained hypothesis. It is
called a linear hypothesis because each equation is linear. To make sure that there
are no redundant equations and that the equations are consistent with each other,
we require that rank(R) = #r (i.e.,R is of full row rank with its rank equaling the
number of rows). But do not be too conscious about the rank condition; in specific
applications, it is very easy to spot a failure of the rank condition if there is one.

Example 1.5 (continuation of Example 1.2):Consider the wage equation
of Example 1.2 whereK = 4. We might wish to test the hypothesis that
education and tenure have equal impact on the wage rate and that there is no
experience effect. The hypothesis is two equations (so #r = 2):

β2 = β3 and β4 = 0.
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This can be cast in the formatRβ = r if R andr are defined as

R =
[

0 1 −1 0
0 0 0 1

]
, r =

[
0
0

]
.

Because the two rows of thisR are linearly independent, the rank condition
is satisfied.

But suppose we require additionally that

β2− β3 = β4.

This is redundant because it holds whenever the first two equations do. With
these three equations, #r = 3 and

R =
0 1 −1 0

0 0 0 1
0 1 −1 −1

 , r =
0

0
0

 .
Since the third row ofR is the difference between the first two,R is not of
full row rank. The consequence of adding redundant equations is thatR no
longer meets the full row rank condition.

As an example of inconsistent equations, consider adding to the first two
equations the third equationβ4 = 0.5. Evidently,β4 cannot be 0 and 0.5
at the same time. The hypothesis is inconsistent because there is noβ that
satisfies the three equations simultaneously. If we nevertheless included this
equation, thenR andr would become

R =
0 1 −1 0

0 0 0 1
0 0 0 1

 , r =
 0

0
0.5

 .
Again, the full row rank condition is not satisfied because the rank ofR is 2
while #r = 3.

The F -Test

To test linear hypotheses, we look for a test statistic that has a known distribution
under the null hypothesis.

Proposition 1.4 (distribution of the F -ratio): Suppose Assumptions 1.1–1.5
hold. Under the null hypothesis H0 : Rβ = r , where R is #r × K with rank(R) =
#r , the F -ratio defined as
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F ≡ (Rb− r)′
[
R(X ′X)−1R′

]−1
(Rb− r)/#r

s2

= (Rb− r)′[R \Var(b | X)R′]−1(Rb− r)/#r (by (1.3.4)) (1.4.9)

is distributed as F(#r ,n − K ) (the F distribution with #r and n − K degrees of
freedom).

As in Proposition 1.3, it suffices to show that the distribution conditional onX
is F(#r ,n − K ); because theF distribution does not depend onX, it is also the
unconditional distribution of the statistic.

PROOF. Sinces2 = e′e/(n− K ), we can write

F = w/#r
q/(n− K )

where

w ≡ (Rb− r)′[σ 2 · R(X ′X)−1R′]−1(Rb− r) and q ≡ e′e
σ 2
.

We need to show

(1) w | X ∼ χ2(#r),

(2) q | X ∼ χ2(n− K ) (this is part (1) in the proof of Proposition 1.3),

(3) w andq are independently distributed conditional onX.

Then, by the definition of theF distribution, theF-ratio∼ F(#r ,n− K ).

(1) Letv ≡ Rb− r . Under H0, Rb− r = R(b− β). So by (1.4.2), conditional on
X, v is normal with mean0, and its variance is given by

Var(v | X) = Var(R(b− β) | X) = R Var(b− β | X)R′ = σ 2 · R(X ′X)−1R′,

which is none other than the inverse of the middle matrix in the quadratic form
for w. Hence,w can be written asv′ Var(v | X)−1v. SinceR is of full row
rank andX ′X is nonsingular,σ 2 · R(X ′X)−1R′ is nonsingular (why? Showing
this is a review question). Therefore, by the definition of theχ2 distribution,
w | X ∼ χ2(#r).19

19Fact: Letx be anm dimensional random vector. Ifx ∼ N(µ,6) with 6 nonsingular, then(x−µ)′6−1(x−
µ) ∼ χ2(m).
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(3) w is a function ofb andq is a function ofe. But b ande are independently
distributed conditional onX, as shown in part (2) of the proof of Proposition
1.3. Sow andq are independently distributed conditional onX.

If the null hypothesisRβ = r is true, we expectRb − r to be small, so large
values ofF should be taken as evidence for a failure of the null. This means that
we look at only the upper tail of the distribution in theF-statistic. The decision
rule of theF-test at the significance level ofα is as follows.

Step 1: Calculate theF-ratio by the formula (1.4.9).
Step 2: Go to the table ofF distribution and look up the entry for #r (the numera-

tor degrees of freedom) andn− K (the denominator degrees of freedom).
Find the critical valueFα(#r ,n− K ) that leavesα for the upper tail of the
F distribution, as illustrated in Figure 1.4. For example, when #r = 3,
n− K = 30, andα = 5%, the critical valueF.05(3,30) is 2.92.

Step 3: Accept the null if theF-ratio fromStep 1is less thanFα(#r ,n−K ). Reject
otherwise.

This decision rule can also be described in terms of thep-value:

Step 1: Same as above.
Step 2: Calculate

p = area of the upper tail of theF distribution to the right of theF-ratio.

Step 3: Accept the null ifp > α; reject otherwise.

Thus, asmall p-value is a signal of the failure of the null.

A More Convenient Expression for F
The above derivation of theF-ratio is by theWald principle , because it is based
on the unrestricted estimator, which is not constrained to satisfy the restrictions of
the null hypothesis. Calculating theF-ratio by the formula (1.4.9) requires matrix
inversion and multiplication. Fortunately, there is a convenient alternative formula
involving two different sum of squared residuals: one isSSR, the minimized sum
of squared residuals obtained from (1.2.1) now denoted asSSRU , and the other is
the restricted sum of squared residuals, denotedSSRR, obtained from

min
β̃

SSR(β̃) s.t. Rβ̃ = r . (1.4.10)
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Figure 1.4: F Distribution

Finding theβ̃ that achieves this constrained minimization is called therestricted
regressionor restricted least squares. It is left as an analytical exercise to show
that theF-ratio equals

F = (SSRR− SSRU )/#r
SSRU/(n− K )

, (1.4.11)

which is the difference in the objective function deflated by the estimate of the
error variance. This derivation of theF-ratio is analogous to how the likelihood-
ratio statistic is derived in maximum likelihood estimation as the difference in log
likelihood with and without the imposition of the null hypothesis. For this reason,
this second derivation of theF-ratio is said to be by theLikelihood-Ratio prin-
ciple. There is a closed-form expression for the restricted least squares estimator
of β. Deriving the expression is left as an analytical exercise. The computation of
restricted least squares will be explained in the context of the empirical example in
Section 1.7.

t versus F
Because hypotheses about individual coefficients are linear hypotheses, thet-test
of H0 : βk = βk is a special case of theF-test. To see this, note that the hypothesis
can be written asRβ = r with

R
(1×K )

=
[
0 · · · 0 1 0 · · · 0

]
(k)

, r = βk.
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So by (1.4.9) theF-ratio is

F = (bk − βk)
[
s2 · (k, k) element of(X ′X)−1

]−1
(bk − βk),

which is the square of thet-ratio in (1.4.5). Since a random variable distributed as
F(1,n− K ) is the square of a random variable distributed ast (n− K ), thet- and
F-tests give the same test result.

Sometimes, the null is that a set of individual regression coefficients equal
certain values. For example, assumeK = 2 and consider

H0 : β1 = 1 and β2 = 0.

This can be written as a linear hypothesisRβ = r for R = I2 andr = (1,0)′. So
the F-test can be used. It is tempting, however, to conduct thet-test separately for
each individual coefficient of the hypothesis. We might accept H0 if both restric-
tions β1 = 1 andβ2 = 0 pass thet-test. This amounts to using the confidence
region of{

(β1, β2) | b1− SE(b1) · tα/2(n− K ) < β1 < b1+ SE(b1) · tα/2(n− K ),

b2− SE(b2) · tα/2(n− K ) < β2 < b2+ SE(b2) · tα/2(n− K )
}
,

which is a rectangular region in the(β1, β2) plane, as illustrated in Figure 1.5. If
(1,0), the point in the(β1, β2) plane specified by the null, falls in this region, one
would accept the null. On the other hand, the confidence region for theF-test is

{
(β1, β2) | (b1 − β1,b2− β2)

(
\Var(b | X))−1

[
b1− β1

b2− β2

]
< 2Fα(#r ,n− K )

}
.

Since \Var(b | X) is positive definite, theF-test acceptance region is an ellipse in
the(β1, β2) plane. The two confidence regions look typically like Figure 1.5.

The F-test should be preferred to the test using twot-ratios for two reasons.
First, if the size (significance level) in each of the twot-tests isα, then the overall
size (the probability that(1,0) is outside the rectangular region) is notα. Second,
as will be noted in the next section (see (1.5.19)), theF-test is a likelihood ratio
test and likelihood-ratio tests have certain desirable properties. So even if the sig-
nificance level in eacht-test is controlled so that the overall size isα, the test is
less desirable than theF-test.20

20For more details on the relationship between thet-test and theF-tests, see Scheffe (1959, p. 46).
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Figure 1.5: t- versus F -Tests

An Example of a Test Statistic Whose Distribution Depends on XXX
To place the discussion of this section in a proper perspective, it may be useful
to note that there are some statistics whose conditional distribution depends onX.
Consider the celebratedDurbin-Watson statistic:∑n

i=2(ei − ei−1)
2∑n

i=1 e2
i

.

The conditional distribution, and hence the critical values, of this statistic depend
on X, but J. Durbin and G. S. Watson have shown that the critical values fall
between two bounds (which depends on the sample size, the number of regres-
sors, and whether the regressor includes a constant). Therefore, the critical values
for the unconditional distribution, too, fall between these bounds.

The statistic is designed for testing whether there is no serial correlation in
the error term. Thus, the null hypothesis is Assumption 1.4, while the maintained
hypothesis is the other assumptions of the classical regression model (including the
strict exogeneity assumption) and the normality assumption. But, as emphasized
in Section 1.1, the strict exogeneity assumption is not satisfied in time-series mod-
els typically encountered in econometrics, and serial correlation is an issue that
arises only in time-series models. Thus, the Durbin-Watson statistic is not useful
in econometrics. More useful tests for serial correlation, which are all based on
large-sample theory, will be covered in the next chapter.
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Q U E S T I O N S F O R R E V I E W

1. (Conditional vs. unconditional distribution) Do we know from Assumptions
1.1–1.5 that the marginal (unconditional) distribution ofb is normal? [Answer:
No.] Are the statisticszk (see (1.4.3)),tk, andF distributed independently of
X? [Answer: Yes, because their distributions conditional onX don’t depend
on X.]

2. (Computation of test statistics) Verify thatSE(bk) as well asb, SSR, s2, andR2

can be calculated from the following sample averages:Sxx, sxy, y′y/n, andȳ.

3. For the formula (1.4.9) for theF to be well-defined, the matrixR(X ′X)−1R′

must be nonsingular. Prove the stronger result that the matrix is positive def-
inite. Hint: X ′X is positive definite. The inverse of a positive definite matrix

is positive definite. Since R (#r × K ) is of full row rank, for any nonzero #r
dimensional vector z, R′z 6= 0.

4. (One-tailedt-test) Thet-test described in the text is thetwo-tailed t-test
because the significanceα is equally distributed between both tails of thet
distribution. Suppose the alternative is one-sided and written as H1 : βk > βk.
Consider the following modification of the decision rule of thet-test.

Step 1: Same as above.
Step 2: Find the critical valuetα such that the area in thet distribution to the

right of tα is α. Note the difference from the two-tailed test: the left
tail is ignored and the area ofα is assigned to the upper tail only.

Step 3: Accept if tk < tα; reject otherwise.

Show that the size (significance level) of thisone-tailed t-test is α.

5. (Relation betweenF(1,n− K ) andt (n− K )) Look up thet andF distribu-
tion tables to verify thatFα(1,n−K ) = (tα/2(n−K ))2 for degrees of freedom
and significance levels of your choice.

6. (t vs. F) “It is nonsense to test a hypothesis consisting of a large number of
equality restrictions, because thet-test will most likely reject at least some of
the restrictions.” Criticize this statement.

7. (Variance ofs2) Show that, under Assumptions 1.1–1.5,

Var(s2 | X) = 2σ 4

n− K
.

Hint: If a random variable is distributed as χ2(m), then its mean is m and vari-

ance 2m.
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1.5 Relation to Maximum Likelihood

Having specified the distribution of the error vectorε, we can use themaximum
likelihood (ML) principle to estimate the model parameters(β, σ 2).21 In this
section, we will show thatb, the OLS estimator ofβ, is also the ML estimator, and
the OLS estimator ofσ 2 differs only slightly from the ML counterpart, when the
error is normally distributed. We will also show thatb achieves theCramer-Rao
lower bound.

The Maximum Likelihood Principle

As you might recall from elementary statistics, the basic idea of the ML principle
is to choose the parameter estimates to maximize the probability of obtaining the
observed sample. To be more precise, we assume that the probability density of the
sample(y,X) is a member of a family of functions indexed by a finite-dimensional
parameter vector̃ζ : f (y,X; ζ̃ ). (This is described asparameterizing the density
function.) This function, viewed as a function of the hypothetical parameter vector
ζ̃ , is called thelikelihood function . At the true parameter vectorζ , the density of
(y,X) is f (y,X; ζ ). The ML estimate of the true parameter vectorζ is theζ̃ that
maximizes the likelihood function given the data(y,X).

Conditional versus Unconditional Likelihood

Since a (joint) density is the product of a marginal density and a conditional density,
the density of(y,X) can be written as

f (y,X; ζ ) = f (y | X; θ) · f (X;ψ), (1.5.1)

whereθ is the subset of the parameter vectorζ that determines the conditional
density function andψ is the subset determining the marginal density function.
The parameter vector of interest isθ ; for the linear regression model with normal
errors,θ = (β ′, σ 2)′ and f (y | X; θ) is given by (1.5.4) below.

Let ζ̃ ≡ (θ̃ ′, ψ̃ ′)′ be a hypothetical value ofζ = (θ ′,ψ ′)′. Then the (uncondi-
tional or joint) likelihood function is

f (y,X; ζ̃ ) = f (y | X; θ̃)· f (X; ψ̃). (1.5.2)

If we knew the parametric form off (X; ψ̃), then we could maximize this joint

21For a fuller treatment of maximum likelihood, see Chapter 7.
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likelihood function over the entire hypothetical parameter vectorζ̃ , and the ML
estimate ofθ would be the elements of the ML estimate ofζ . We cannot do this
for the classical regression model because the model does not specifyf (X; ψ̃).
However, if there is no functional relationship betweenθ̃ andψ̃ (such as a subset
of ψ̃ being a function of̃θ), then maximizing (1.5.2) with respect toζ̃ is achieved
by separately maximizingf (y | X; θ̃) with respect tõθ and maximizingf (X; ψ̃)
with respect toψ̃ . Thus the ML estimate ofθ also maximizes theconditional
likelihood f (y | X; θ̃).

The Log Likelihood for the Regression Model

As already observed, Assumption 1.5 (the normality assumption) together with
Assumptions 1.2 and 1.4 imply that the distribution ofε conditional onX is N(0,
σ 2 In) (see (1.4.1)). But sincey = Xβ + ε by Assumption 1.1, we have

y | X ∼ N(Xβ, σ 2 In). (1.5.3)

Thus, the conditional density ofy givenX is22

f (y | X) = (2πσ 2)−n/2 exp
[
− 1

2σ 2
(y− Xβ)′(y− Xβ)

]
. (1.5.4)

Replacing the true parameters(β, σ 2) by their hypothetical values(β̃, σ̃ 2) and tak-
ing logs, we obtain thelog likelihood function:

log L(β̃, σ̃ 2) = −n

2
log(2π)− n

2
log(σ̃ 2)− 1

2σ̃ 2
(y− Xβ̃)′(y− Xβ̃). (1.5.5)

Since the log transformation is a monotone transformation, the ML estimator of
(β, σ 2) is the(β̃, σ̃ 2) that maximizes this log likelihood.

ML via Concentrated Likelihood

It is instructive to maximize the log likelihood in two stages. First, maximize over
β̃ for any givenσ̃ 2. The β̃ that maximizes the objective function could (but does
not, in the present case of Assumptions 1.1–1.5) depend onσ̃ 2. Second, maximize
over σ̃ 2 taking into account that thẽβ obtained in the first stage could depend on
σ̃ 2. The log likelihood function in which̃β is constrained to be the value from

22Recall from basic probability theory that the density function for ann-variate normal distribution with mean
µ and variance matrix6 is

(2π)−n/2 |6|−1/2 exp
[
−1

2
(y− µ)′6−1(y− µ)

]
.

To derive (1.5.4), just setµ = Xβ and6 = σ2In.
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the first stage is called theconcentrated log likelihood function (concentrated
with respect tõβ). For the normal log likelihood (1.5.5), the first stage amounts
to minimizing the sum of squares(y − Xβ̃)′(y − Xβ̃). Theβ̃ that does it is none
other than the OLS estimatorb, and the minimized sum of squares ise′e. Thus, the
concentrated log likelihood is

concentrated log likelihood= −n

2
log(2π)− n

2
log(σ̃ 2)− 1

2σ̃ 2
e′e. (1.5.6)

This is a function ofσ̃ 2 alone, and thẽσ 2 that maximizes the concentrated likeli-
hood is the ML estimate ofσ 2. The maximization is straightforward for the present
case of the classical regression model, becausee′e is not a function ofσ̃ 2 and so
can be taken as a constant. Still, taking the derivative with respect toσ̃ 2, rather
than with respect tõσ , can be tricky. This can be avoided by denotingσ̃ 2 by γ̃ .
Taking the derivative of (1.5.6) with respect toγ̃ (≡ σ̃ 2) and setting it to zero, we
obtain the following result.

Proposition 1.5 (ML Estimator of (β, σ 2)): Suppose Assumptions 1.1–1.5 hold.
Then the ML estimator of β is the OLS estimator b and

ML estimator of σ 2 = 1

n
e′e= SSR

n
= n− K

n
s2. (1.5.7)

We know from Proposition 1.2 thats2 is unbiased. Sinces2 is multiplied by a factor
(n − K )/n which is different from 1, the ML estimator ofσ 2 is biased, although
the bias becomes arbitrarily small as the sample sizen increases for any given fixed
K .

For later use, we calculate the maximized value of the likelihood function.
Substituting (1.5.7) into (1.5.6), we obtain

maximized log likelihood= −n

2
log
(2π

n

)
− n

2
− n

2
log(SSR),

so that the maximized likelihood is

max
β̃,σ̃2

L(β̃, σ̃ 2) =
(2π

n

)−n/2 · exp
(
−n

2

)
· (SSR)−n/2. (1.5.8)

Cramer-Rao Bound for the Classical Regression Model

Just to refresh your memory of basic statistics, we temporarily step outside the
classical regression model and present without proof the Cramer-Rao inequality for
the variance-covariance matrix of any unbiased estimator. For this purpose, define
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thescore vectorat a hypothetical parameter valueθ̃ to be the gradient (vector of
partial derivatives) of log likelihood:

score: s(θ̃) ≡ ∂ log L(θ̃)

∂ θ̃
. (1.5.9)

Cramer-Rao Inequality: Let z be a vector of random variables (not necessarily
independent) the joint density of which is given by f (z; θ), where θ is an m-
dimensional vector of parameters in some parameter space 2. Let L(θ̃) ≡ f (z; θ̃)
be the likelihood function, and let θ̂(z) be an unbiased estimator of θ with a finite
variance-covariance matrix. Then, under some regularity conditions on f (z; θ)
(not stated here),

Var[θ̂(z)] ≥ I(θ)−1

(m×m)
(≡ Cramer-Rao Lower Bound ),

where I(θ) is the information matrix defined by

I(θ) ≡ E[s(θ) s(θ)′]. (1.5.10)

(Note well that the score is evaluated at the true parameter value θ .) Also under the
regularity conditions, the information matrix equals the negative of the expected
value of the Hessian (matrix of second partial derivatives) of the log likelihood:

I(θ) = −E

[
∂2 log L(θ)

∂ θ̃ ∂ θ̃
′

]
. (1.5.11)

This is called the information matrix equality .

See, e.g., Amemiya (1985, Theorem 1.3.1) for a proof and a statement of the regu-
larity conditions. Those conditions guarantee that the operations of differentiation
and taking expectations can be interchanged. Thus, for example,

E[∂L(θ)/∂ θ̃] = ∂ E[L(θ)]/∂ θ̃ .

Now, for the classical regression model (of Assumptions 1.1–1.5), the likeli-
hood functionL(θ̃) in the Cramer-Rao inequality is the conditional density (1.5.4),
so the variance in the inequality is the variance conditional onX. It can be shown
that those regularity conditions are satisfied for the normal density (1.5.4) (see,
e.g., Amemiya, 1985, Sections 1.3.2 and 1.3.3). In the rest of this subsection, we
calculate the information matrix for (1.5.4). The parameter vectorθ is (β ′, σ 2)′.
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So θ̃ = (β̃ ′, γ̃ )′ and the matrix of second derivatives we seek to calculate is

∂2 log L(θ)

∂ θ̃ ∂ θ̃
′

((K+1)×(K+1))

=


∂2 log L(θ)

∂β̃ ∂β̃
′

(K×K )

∂2 log L(θ)
∂β̃ ∂γ̃
(K×1)

∂2 log L(θ)

∂γ̃ ∂β̃
′

(1×K )

∂2 log L(θ)
∂2γ̃

(1×1)

 . (1.5.12)

The first and second derivatives of the log likelihood (1.5.5) with respect toθ̃ ,
evaluated at the true parameter vectorθ , are

∂ log L(θ)

∂β̃
= 1

γ
X ′(y− Xβ), (1.5.13a)

∂ log L(θ)

∂γ̃
= − n

2γ
+ 1

2γ 2
(y− Xβ)′(y− Xβ). (1.5.13b)

∂2 log L(θ)

∂β̃ ∂β̃
′ = −

1

γ
X ′X, (1.5.14a)

∂2 log L(θ)

∂2γ̃
= n

2γ 2
− 1

γ 3
(y− Xβ)′(y− Xβ), (1.5.14b)

∂2 log L(θ)

∂β̃ ∂γ̃
= − 1

γ 2
X ′(y− Xβ). (1.5.14c)

Since the derivatives are evaluated at the true parameter value,y − Xβ = ε in
these expressions. Substituting (1.5.14) into (1.5.12) and using E(ε | X) = 0
(Assumption 1.2), E(ε′ε | X) = nσ 2 (implication of Assumption 1.4), and recall-
ing γ = σ 2, we can easily derive

I(θ) =
[

1
σ2 X ′X 0

0′ n
2σ 4

]
. (1.5.15)

Here, the expectation is conditional onX because the likelihood function (1.5.4) is
a conditional density conditional onX. This block diagonal matrix can be inverted
to obtain the Cramer-Rao bound:

Cramer-Rao bound≡ I(θ)−1 =
[
σ 2 · (X ′X)−1 0

0′ 2σ 4

n

]
. (1.5.16)

Therefore, the unbiased estimatorb, whose variance isσ 2 · (X ′X)−1 by Proposition
1.1, attains the Cramer-Rao bound. We have thus proved
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Proposition 1.6 (b is the Best Unbiased Estimator (BUE)):Under Assumptions
1.1–1.5, the OLS estimator b of β is BUE in that any other unbiased (but not
necessarily linear) estimator has larger conditional variance in the matrix sense.

This result should be distinguished from the Gauss-Markov Theorem thatb is min-
imum variance among those estimators that are unbiasedand linear iny. Proposi-
tion 1.6 says thatb is minimum variance in a larger class of estimators that includes
nonlinear unbiased estimators. This stronger statement is obtained under the nor-
mality assumption (Assumption 1.5) which is not assumed in the Gauss-Markov
Theorem. Put differently, the Gauss-Markov Theorem does not exclude the possi-
bility of some nonlinear estimator beating OLS, but this possibility is ruled out by
the normality assumption.

As was already seen, the ML estimator ofσ 2 is biased, so the Cramer-Rao
bound does not apply. But the OLS estimators2 of σ 2 is unbiased. Does it achieve
the bound? We have shown in a review question to the previous section that

Var(s2 | X) = 2σ 4

n− K

under the same set of assumptions as in Proposition 1.6. Therefore,s2 does not
attain the Cramer-Rao bound 2σ 4/n. However, it can be shown that an unbiased
estimator ofσ 2 with variance lower than 2σ 4/(n − K ) does not exist (see, e.g.,
Rao, 1973, p. 319).

The F -Test as a Likelihood Ratio Test

The likelihood ratio test of the null hypothesis comparesLU , the maximized like-
lihood without the imposition of the restriction specified in the null hypothesis,
with L R, the likelihood maximized subject to the restriction. If the likelihood ratio
λ ≡ LU/L R is too large, it should be a sign that the null is false. TheF-test
of the null hypothesis H0 : Rβ = r considered in the previous section is a likeli-
hood ratio test because theF-ratio is a monotone transformation of the likelihood
ratio λ. For the present model,LU is given by (1.5.8) where theSSR, the sum
of squared residuals minimized without the constraint H0, is theSSRU in (1.4.11).
The restricted likelihoodL R is given by replacing thisSSRby the restricted sum of
squared residuals,SSRR. So

L R = max
β̃,σ̃ 2 s.t. H0

L(β̃, σ̃ 2) =
(2π

n

)−n/2 · exp
(
−n

2

)
· (SSRR)

−n/2, (1.5.17)

and the likelihood ratio is
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λ ≡ LU

L R
=
(

SSRU
SSRR

)−n/2

. (1.5.18)

Comparing this with the formula (1.4.11) for theF-ratio, we see that theF-ratio is
a monotone transformation of the likelihood ratioλ:

F = n− K

#r
(λ2/n − 1), (1.5.19)

so that the two tests are the same.

Quasi-Maximum Likelihood

All these results assume the normality of the error term. Without normality, there
is no guarantee that the ML estimator ofβ is OLS (Proposition 1.5) or that the OLS
estimatorb achieves the Cramer-Rao bound (Proposition 1.6). However, Proposi-
tion 1.5 does imply thatb is aquasi- (or pseudo-) maximum likelihood estima-
tor , an estimator that maximizes a misspecified likelihood function. The misspec-
ified likelihood function we have considered is the normal likelihood. The results
of Section 1.3 can then be interpreted as providing the finite-sample properties of
the quasi-ML estimator when the error is incorrectly specified to be normal.

Q U E S T I O N S F O R R E V I E W

1. (Use of regularity conditions) Assuming that taking expectations (i.e., taking
integrals) and differentiation can be interchanged, prove that the expected value
of the score vector given in (1.5.9), if evaluated at the true parameter valueθ ,
is zero.Hint: What needs to be shown is that∫

∂ log f (z; θ)
∂ θ̃

f (z; θ)dz= 0.

Since f (z; θ̃) is a density,
∫

f (z, θ̃)dz = 1 for any θ̃ . Differentiate both sides

with respect to θ̃ and use the regularity conditions, which allows us to change

the order of integration and differentiation, to obtain
∫ [∂ f (z; θ)/∂ θ̃]dz = 0.

Also, from basic calculus,

∂ log f (z; θ)
∂ θ̃

= 1

f (z; θ)
∂ f (z; θ)
∂ θ̃

.

2. (Maximizing joint log likelihood) Consider maximizing (the log of ) the joint
likelihood (1.5.2) for the classical regression model, whereθ̃ = (β̃ ′, σ̃ 2)′ and
log f (y | X; θ̃) is given by (1.5.5). You would parameterize the marginal like-
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lihood f (X; ψ̃) and take the log of (1.5.2) to obtain the objective function to
be maximized overζ ≡ (θ ′,ψ ′)′. What is the ML estimator ofθ ≡ (β ′, σ 2)′?
[Answer: It should be the same as that in Proposition 1.5.] Derive the Cramer-
Rao bound forβ. Hint: By the information matrix equality,

I(ζ ) = −E

[
∂2 log L(ζ )

∂ ζ̃ ∂ ζ̃
′

]
.

Also, ∂2 log L(ζ )/(∂ θ̃ ∂ψ̃
′
) = 0.

3. (Concentrated log likelihood with respect tõσ 2) Writing σ̃ 2 as γ̃ , the log
likelihood function for the classical regression model is

log L(β̃, γ̃ ) = −n

2
log(2π)− n

2
log(γ̃ )− 1

2γ̃
(y− Xβ̃)′(y− Xβ̃).

In the two-step maximization procedure described in the text, we first maxi-
mized this function with respect tõβ. Instead, first maximize with respect toγ̃
given β̃. Show that the concentrated log likelihood (concentrated with respect
to γ̃ ≡ σ̃ 2) is

−n

2
[1+ log(2π)] − n

2
log

(
(y− Xβ̃)′(y− Xβ̃)

n

)
.

4. (Information matrix equality for classical regression model) Verify (1.5.11)
for the linear regression model.

5. (Likelihood equations for classical regression model) We used the two-step
procedure to derive the ML estimate for the classical regression model. An
alternative way to find the ML estimator is to solve for the first-order conditions
that set (1.5.13) equal to zero (the first-order conditions for the log likelihood
is called thelikelihood equations). Verify that the ML estimator given in
Proposition 1.5 solves the likelihood equations.

1.6 Generalized Least Squares (GLS)

Assumption 1.4 states that then×n matrix of conditional second moments E(εε′ |
X) (= Var(ε | X)) is spherical, that is, proportional to the identity matrix. Without
the assumption, each element of then×n matrix is in general a nonlinear function
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of X. If the error is not (conditionally) homoskedastic, the values of the diagonal
elements of E(εε′ | X) are not the same, and if there is correlation in the error
term between observations (the case of serial correlation for time-series models),
the values of the off-diagonal elements are not zero. For any given positive scalar
σ 2, defineV(X) ≡ E(εε′ | X)/σ 2 and assumeV(X) is nonsingular and known.
That is,

E(εε′ | X) = σ 2 V(X)
(n×n)

, V(X) nonsingular and known. (1.6.1)

The reason we decompose E(εε′ | X) into the componentσ 2 that is common to
all elements of the matrix E(εε′ | X) and the remaining componentV(X) is that
we do not need to know the value ofσ 2 for efficient estimation. The model that
results when Assumption 1.4 is replaced by (1.6.1), which merely assumes that the
conditional second moment E(εε′ | X) is nonsingular, is called thegeneralized
regression model.

Consequence of Relaxing Assumption 1.4

Of the results derived in the previous sections, those that assume Assumption 1.4
are no longer valid for the generalized regression model. More specifically,

• The Gauss-Markov Theorem no longer holds for the OLS estimator

b ≡ (X ′X)−1X ′y.

The BLUE is some other estimator.

• The t-ratio is not distributed as thet distribution. Thus, thet-test is no longer
valid. The same comments apply to theF-test.

• However, the OLS estimatoris still unbiased, because the unbiasedness result
(Proposition 1.1(a)) does not require Assumption 1.4.

Efficient Estimation with Known VVV
If the value of the matrix functionV(X) is known, does there exist a BLUE for the
generalized regression model? The answer is yes, and the estimator is called the
generalized least squares (GLS) estimator, which we now derive. The basic idea
of the derivation is to transform the generalized regression model, which consists
of Assumptions 1.1–1.3 and (1.6.1), into a model that satisfies all the assumptions,
including Assumption 1.4, of the classical regression model.
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For economy of notation, we useV for the valueV(X). SinceV is by construc-
tion symmetric and positive definite, there exists a nonsingularn×n matrixC such
that

V−1 = C′C. (1.6.2)

This decomposition is not unique, with more than one choice forC, but, as is clear
from the discussion below, the choice ofC doesn’t matter. Now consider creating
a new regression model by transforming(y,X, ε) by C as

ỹ ≡ Cy, X̃ ≡ CX, ε̃ ≡ Cε. (1.6.3)

Then Assumption 1.1 for(y,X, ε) implies that(ỹ, X̃, ε̃) too satisfies linearity:

ỹ = X̃β + ε̃. (1.6.4)

The transformed model satisfies the other assumptions of the classical linear regres-
sion model. Strict exogeneity is satisfied because

E(ε̃ | X̃) = E(ε̃ | X)
(sinceC is nonsingular,X andX̃ contain the same information)

= E(Cε | X)
= C E(ε | X) (by the linearity of conditional expectations)
= 0 (since E(ε | X) = 0 by Assumption 1.2).

BecauseV is positive definite, the no-multicollinearity assumption is also satisfied
(see a review question below for a proof ). Assumption 1.4 is satisfied for the
transformed model because

E(ε̃ε̃′ | X̃) = E(ε̃ε̃′ | X) (sinceX̃ andX contain the same information)

= C E(εε′ | X)C′ (sinceε̃ε̃′ = Cεε′C′)

= C · σ 2 · VC ′ (by (1.6.1))

= σ 2CVC ′

= σ 2 In (since(C′)−1V−1C−1 = In or CVC ′ = In by (1.6.2)).

So indeed the variance of the transformed error vectorε̃ is spherical. Finally,̃ε | X̃
is normal because the distribution ofε̃ | X̃ is the same as̃ε | X and ε̃ is a linear
transformation ofε. This completes the verification of Assumptions 1.1–1.5 for
the transformed model.
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The Gauss-Markov Theorem for the transformed model implies that the BLUE
of β for the generalized regression model is the OLS estimator applied to (1.6.4):

β̂GLS= (X̃ ′X̃)−1X̃ ′ỹ

= [(CX)′(CX)]−1(CX)′Cy

= (X ′C′CX)−1(X ′C′Cy)

= (X ′V−1X)−1X ′V−1y (by (1.6.2)). (1.6.5)

This is the GLS estimator. Its conditional variance is

Var(β̂GLS | X)
= (X ′V−1X)−1X ′V−1 Var(y | X)V−1X(X ′V−1X)−1

= (X ′V−1X)−1X ′V−1(σ 2V)V−1X(X ′V−1X)−1 (since Var(y | X) = Var(ε | X))
= σ 2 · (X ′V−1X)−1. (1.6.6)

Since replacingV byσ 2·V (= Var(ε | X)) in (1.6.5) does not change the numerical
value, the GLS estimator can also be written as

β̂GLS =
[
X ′ Var(ε | X)−1X

]−1
X ′ Var(ε | X)−1y.

As noted above, the OLS estimator(X ′X)−1X ′y too is unbiased without Assump-
tion 1.4, but nevertheless the GLS estimator should be preferred (providedV is
known) because the latter is more efficient in that the variance is smaller in the
matrix sense. The gain in efficiency is achieved by exploiting the heteroskedastic-
ity and correlation between observations in the error term, which, operationally, is
to insert the inverse of (a matrix proportional to) Var(ε | X) in the OLS formula,
as in (1.6.5). The discussion so far can be summarized as

Proposition 1.7 (finite-sample properties of GLS):

(a) (unbiasedness) Under Assumption 1.1–1.3, E(β̂GLS | X) = β.

(b) (expression for the variance) Under Assumptions 1.1–1.3 and the assumption
(1.6.1) that the conditional second moment is proportional to V(X),

Var(β̂GLS | X) = σ 2 · (X ′V(X)−1X)−1.

(c) (efficiency of GLS) Under the same set of assumptions as in (b), the GLS
estimator is efficient in that the conditional variance of any unbiased estimator
that is linear in y is greater than or equal to Var(β̂GLS | X) in the matrix sense.
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A Special Case: Weighted Least Squares (WLS)

The idea of adjusting for the error variance matrix becomes more transparent when
there is no correlation in the error term between observations so that the matrixV
is diagonal. Letvi (X) be thei -th diagonal element ofV(X). So

E(ε2
i | X) (= Var(εi | X)) = σ 2 · vi (X).

It is easy to see thatC is also diagonal, with the square root of 1/vi (X) in the i -th
diagonal. Thus,(ỹ, X̃) is given by

ỹi = yi√
vi (X)

, x̃i = xi√
vi (X)

(i = 1,2, . . . ,n).

Therefore, efficient estimation under a known form of heteroskedasticity is first to
weight each observation by the reciprocal of the square root of the variancevi (X)
and then apply OLS. This is called theweighted regression(or theweighted least
squares(WLS)).

An important further special case is the case of a random sample where{yi , xi }
is i.i.d. acrossi . As was noted in Section 1.1, the error is unconditionally homo-
skedastic (i.e., E(ε2

i ) does not depend oni ), but still GLS can be used to increase
efficiency because the error can be conditionally heteroskedastic. The conditional
second moment E(ε2

i | X) for the case of random samples depends only onxi , and
the functional form of E(ε2

i | xi ) is the same acrossi . Thus

vi (X) = v(xi ) for random samples. (1.6.7)

So the knowledge ofV(·) comes down to a single function ofK variables,v(·).

Limiting Nature of GLS

All these sanguine conclusions about the finite-sample properties of GLS rest on
the assumption that the regressors in the generalized regression model are strictly
exogenous(E(ε̃ | X̃) = 0). This fact limits the usefulness of the GLS proce-
dure. Suppose, as is often the case with time-series models, that the regressors
are not strictly exogenous and the error is serially correlated. So neither OLS
nor GLS has those good finite-sample properties such as unbiasedness. Neverthe-
less, as will be shown in the next chapter, the OLS estimator, which ignores serial
correlation in the error, will have some good large sample properties (such as “con-
sistency” and “asymptotic normality”), provided that the regressors are “predeter-
mined” (which is weaker than strict exogeneity). The GLS estimator, in contrast,
does not have that redeeming feature. That is, if the error is not strictly exogenous
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but is merely predetermined, the GLS procedure to correct for serial correlation can
make the estimator inconsistent (see Section 6.7). A procedure for explicitly taking
serial correlation into account while maintaining consistency will be presented in
Chapter 6.

If it is not appropriate for correcting for serial correlation, the GLS procedure
can still be used to correct for heteroskedasticity when the error is not serially
correlated with diagonalV(X), in the form of WLS. But that is provided that the
matrix functionV(X) is known. Very rarely do we havea priori information spec-
ifying the values of the diagonal elements ofV(X), which is necessary to weight
observations. In the case of a random sample where serial correlation is guaranteed
not to arise, the knowledge ofV(X) boils down to a single function ofK variables,
v(xi ), as we have just seen, but even for this case the knowledge of such a function
is unavailable in most applications.

If we do not know the functionV(X), we can estimate its functional form
from the sample. This approach is called theFeasible Generalized Least Squares
(FGLS). But if the function V(X) is estimated from the sample, its valueV
becomes a random variable, which affects the distribution of the GLS estimator.
Very little is known about the finite-sample properties of the FGLS estimator. We
will cover the large-sample properties of the FGLS estimator in the context of het-
eroskedasticity correction in the next chapter.

Before closing, one positive side of GLS should be noted: most linear estima-
tion techniques — including the 2SLS, 3SLS, and the random effects estimators to
be introduced later — can be expressed as a GLS estimator, with some liberal defi-
nition of data matrices. However, those estimators and OLS can also be interpreted
as a GMM (generalized method of moments) estimator, and the GMM interpreta-
tion is more useful for developing large-sample results.

Q U E S T I O N S F O R R E V I E W

1. (The no-multicollinearity assumption for the transformed model) Assumption
1.3 for the transformed model is that rank(CX) = K . This is satisfied sinceC
is nonsingular andX is of full column rank. Show this.Hint: Since X is of full

column rank, for any K -dimensional vector c 6= 0, Xc 6= 0.

2. (GeneralizedSSR) Show that̂βGLS minimizes(y− Xβ̃)′V−1(y− Xβ̃).

3. Derive the expression for Var(b | X) for the generalized regression model.
What is the relation of it to Var(β̂GLS | X)? Verify that Proposition 1.7(c)
implies
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(X ′X)−1X ′VX (X ′X)−1 ≥ (X ′V−1X)−1.

4. (Sampling error of GLS) Show:̂βGLS− β = (X ′V−1X)−1X ′V−1ε.

1.7 Application: Returns to Scale in Electricity Supply

Nerlove’s 1963 paper is a classic study of returns to scale in a regulated indus-
try. It also is excellent material for illustrating the techniques of this chapter and
presenting a few more not yet covered.

The Electricity Supply Industry

At the time of Nerlove’s writing, the U.S. electric power supply industry had the
following features:

(1) Privately owned local monopolies supply power on demand.

(2) Rates (electricity prices) are set by the utility commission.

(3) Factor prices (e.g., the wage rate) are given to the firm, either because of perfect
competition in the market for factor inputs or through long-term contracts with
labor unions.

These institutional features will be relevant when we examine whether the OLS is
an appropriate estimation procedure.23

The Data

Nerlove assembled a cross-section data set on 145 firms in 44 states in the year
1955 for which data on all the relevant variables were available. The variables in
the data are total costs, factor prices (the wage rate, the price of fuel, and the rental
price of capital), and output. Although firms own capital (such as power plants,
equipment, and structures), the standard investment theory of Jorgenson (1963)
tells us that (as long as there are no costs in changing the capital stock) the firm
should behave as if it rents capital on a period-to-period basis from itself at a rental
price called the “user cost of capital,” which is defined as(r + δ) · pI , wherer here
is the real interest rate (below we will user for the degree of returns to scale),δ is
the depreciation rate, andpI is the price of capital goods. For this reason capital

23Thanks to the deregulation of the industry since the time of Nerlove’s writing, multiple firms are now allowed
to compete in the same local market, and the strict price control has been lifted in many states. So the first two
features no longer characterize the industry.
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input can be treated as if it is a variable factor of production, just like labor and fuel
inputs.

Appendix B of Nerlove (1963) contains a careful and honest discussion of how
the data were constructed. Data on output, fuel, and labor costs (which, along
with capital costs, make up total costs) were obtained from the Federal Power
Commission (1956). For the wage rate, Nerlove used statewide average wages for
utility workers. Ideally, one would calculate capital costs as the reproduction cost
of capital times the user cost of capital. Due to data limitation, Nerlove instead
used interest and depreciation charges available from the firm’s books.

Why Do We Need Econometrics?

Why do we need a fancy econometric technique like OLS to determine returns to
scale? Why can’t we be simple-minded and plot the average cost (which can be
easily calculated from the data as the ratio of total costs to output) against output
and see whether the AC (average cost) curve is downward sloping? The reason is
that each firm can have a different AC curve. If firms face different factor prices,
then the average cost is less for firms facing lower factor prices. That cross-section
units at a given moment face the same prices is usually a good assumption to make,
but not for the U.S. electricity industry with substantial regional differences in fac-
tor prices. The effect of factor prices on the AC curve has to be isolated somehow.
The approach taken by Nerlove, which became a standard econometric practice, is
to estimate a parameterized cost function.

Another factor that shifts the individual AC curve is the level of production
efficiency. If more efficient firms produce more output, then it is possible that
the individual AC curve is upward sloping but the line connecting the observed
combination of the average cost and output is downward sloping. To illustrate,
consider a competitive industry described in Figure 1.6, where the AC and MC
(marginal cost) curves are drawn for two firms competing in the same market. To
focus on the connection between production efficiency and output, assume that all
firms face the same factor prices so that the only reason the AC and MC curves
differ between firms is the difference in production efficiency. The AC and MC
curves are upward sloping to reflect decreasing returns to scale. The AC and MC
curves for firm A lie above those for firm B because firm A is less efficient than
B. Because the industry is competitive, both firms face the same pricep. Since
output is determined at the intersection of the MC curve and the market price, the
combinations of output and the average cost for two firms are points A and B in
the figure. The curve obtained from connecting these two points can be downward
sloping, giving a false impression ofincreasingreturns to scale.
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Figure 1.6: Output Determination

The Cobb-Douglas Technology

To derive a parameterized cost function, we start with the Cobb-Douglas produc-
tion function

Qi = Ai xα1
i1 xα2

i2 xα3
i3 , (1.7.1)

whereQi is firm i ’s output,xi1 is labor input for firmi , xi2 is capital input, andxi3

is fuel. Ai captures unobservable differences in production efficiency (this term is
often calledfirm heterogeneity). The sumα1+α2+α3 ≡ r is the degree of returns
to scale. Thus, it is assumeda priori that the degree of returns to scale is constant
(this should not be confused with constant returns to scale, which is thatr = 1).
Since the electric utilities in the sample are privately owned, it is reasonable to
suppose that they are engaged in cost minimization (see, however, the discussion
at the end of this section). We know from microeconomics that the cost function
associated with the Cobb-Douglas production function is Cobb-Douglas:

TCi = r · (Ai α
α1
1 α

α2
2 α

α3
3 )
−1/r Q1/r

i pα1/r
i1 pα2/r

i2 pα3/r
i3 , (1.7.2)

whereTCi is total costs for firmi . Taking logs, we obtain the following log-linear
relationship:

log(TCi ) = µi + 1

r
log(Qi )+ α1

r
log(pi1)+ α2

r
log(pi2)+ α3

r
log(pi3),

(1.7.3)
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whereµi = log[r · (Ai α
α1
1 α

α2
2 α

α3
3 )
−1/r ]. The equation is said to belog-linear

because both the dependent variable and the regressors are logs. Coefficients in
log-linear equations areelasticities. The log(pi1) coefficient, for example, is the
elasticity of total costs with respect to the wage rate, i.e., the percentage change
in total costs when the wage rate changes by 1 percent. The degree of returns to
scale, which in (1.7.3) is the reciprocal of the output elasticity of total costs, is
independent of the level of output.

Now let µ ≡ E(µi ) and defineεi ≡ µi − µ so that E(εi ) = 0. This εi

represents the inverse of the firm’s production efficiency relative to the industry’s
average efficiency; firms with positiveεi are high-cost firms. With this notation,
(1.7.3) becomes

log(TCi ) = β1+ β2 log(Qi )+ β3 log(pi1)+ β4 log(pi2)+ β5 log(pi3)+ εi ,

(1.7.4)

where

β1 = µ, β2 = 1

r
, β3 = α1

r
, β4 = α2

r
, and β5 = α3

r
. (1.7.5)

Thus, the cost function has been cast in the regression format of Assumption 1.1
with K = 5. We noted a moment ago that the simple-minded approach of plotting
the average cost against output cannot account for the factor price effect. What
we have shown is that under the Cobb-Douglas technology the factor price effect
is controlled for by the inclusion in the cost function of the logs of factor prices.
Because the equation is derived from an explicit description of the firm’s technol-
ogy, the error term as well as the regression coefficients have clear interpretations.

How Do We Know Things Are Cobb-Douglas?

The Cobb-Douglas functional form is certainly a very convenient parameterization
of technology. But how do we know that the true production function is Cobb-
Douglas? The Cobb-Douglas form satisfies the properties, such as diminishing
marginal productivities, that we normally require for the production function, but
the Cobb-Douglas form is certainly not the only functional form with those desir-
able properties. A number of more general functional forms have been proposed
in the literature, but the Cobb-Douglas form, despite its simplicity, has proved to
be a surprisingly good description of technology. Nerlove’s paper is one of the
relatively few studies in which the Cobb-Douglas (log-linear) form is found to be
inadequate, but it only underscores the importance of the Cobb-Douglas functional
form as the benchmark from which one can usefully contemplate generalizations.
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Are the OLS Assumptions Satisfied?

To justify the use of least squares, we need to make sure that Assumptions 1.1–
1.4 are satisfied for the equation (1.7.4). Evidently, Assumption 1.1 (linearity) is
satisfied with

yi = log (TCi ) , xi = (1, log(Qi ), log (pi1) , log (pi2) , log (pi3))
′ .

There is no reason to expect that the regressors in (1.7.4) are perfectly multi-
collinear. Indeed, in Nerlove’s data set, rank(X) = 5 andn = 145, so Assumption
1.3 (no multicollinearity) is satisfied as well.

In verifying the strict exogeneity assumption (Assumption 1.2), the features of
the electricity industry mentioned above are relevant. It is reasonable to assume, as
in most cross-section data, thatxi is independent ofεj for i 6= j . So the question
is whetherxi is independent ofεi . If it is, then E(ε | X) = 0. According to the
third feature of the industry, factor prices are given to the firm with no regard for
the firm’s efficiency, so it is eminently reasonable to assume that factor prices are
independent ofεi .

What about output? Since the firm’s output is supplied on demand (the first
feature of the industry), output depends on the price of electricity set by the utility
commission (the second feature). If the regulatory scheme is such that the price is
determined regardless of the firm’s efficiency, then log(Qi ) andεi are independ-
ently distributed. On the other hand, if the price is set to cover the average cost,
then the firm’s efficiency affects output through the effect of the electricity price
on demand and output in this case isendogenous, being correlated with the error
term. We will very briefly come back to this point at the end, but until then we
will ignore the possible endogeneity of output. This certainly would not do if we
were dealing with a competitive industry. Since high-cost firms tend to produce
less, there would be anegativecorrelation between log(Qi ) andεi , making OLS
an inappropriate estimation procedure.

Regarding Assumption 1.4, the assumption of no correlation in the error term
between firms (observations) would be suspect if, for example, there were tech-
nology spillovers running from one firm to other closely located firms. For the
industry under study, this is probably not the case.

There is noa priori reason to suppose that homoskedasticity is satisfied. Indeed,
the plot of residuals to be shown shortly suggests a failure of this condition. The
main part of Nerlove’s paper is exploring ways to deal with this problem.
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Restricted Least Squares

The equation (1.7.4) isoveridentified in that its five coefficients, being functions of
the four technology parameters (which areα1, α2, α3, andµ), are not free parame-
ters. We can easily see that from (1.7.5):β3+β4+β5 = 1 (recall:r ≡ α1+α2+α3).
This is a reflection of the generic property of the cost function that it is linearly
homogeneous in factor prices. Indeed, multiplying total costsTCi and all factor
prices(pi1, pi2, pi3) by a common factor leaves the cost function (1.7.4) intact if
and only ifβ3+ β4 + β5 = 1.

Estimating the equation by least squares while imposinga priori restrictions on
the coefficient vector is the restricted least squares. It can be done easily by deriv-
ing from the original regression a separate regression that embodies the restrictions.
In the present example, to impose the homogeneity restrictionβ3 + β4 + β5 = 1
on the cost function, we take any one of the factor prices, saypi3, and subtract
log(pi3) from both sides of (1.7.4) to obtain

log

(
TCi

pi3

)
= β1+ β2 log(Qi )+ β3 log

(
pi1

pi3

)
+ β4 log

(
pi2

pi3

)
+ εi . (1.7.6)

There are now four coefficients in the regression, from which unique values of
the four technology parameters can be determined. The restricted least squares
estimate of(β1, . . . , β4) is simply the OLS estimate of the coefficients in (1.7.6).
The restricted least squares estimate ofβ5 is the value implied by the estimate of
(β1, . . . , β4) and the restriction.

Testing the Homogeneity of the Cost Function

Before proceeding to the estimation of the restricted model (1.7.6), in order to test
the homogeneity restrictionβ3+β4+β5 = 1, we will first estimate the unrestricted
model (1.7.4). If one uses the data available in printed form in Nerlove’s paper, the
OLS estimate of the equation is:

log(TCi ) = −3.5
(1.8)

+ 0.72 log(Qi )

(0.017)
+ 0.44 log(pi1)

(0.29)

− 0.22 log(pi2)

(0.34)
+ 0.43 log(pi3)

(0.10)

R2 = 0.926, mean of dep. variable= 1.72,

SER= 0.392, SSR= 21.552, n = 145. (1.7.7)

Here, numbers in parentheses are the standard errors of the OLS coefficient esti-
mates. Sinceβ2 = 1/r , the estimate of the degree of returns to scale implied
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by the OLS coefficient estimates is about 1.4(= 1/0.72). The OLS estimate of
β4 = α2/r has the wrong sign. As noted by Nerlove, there are reasons to believe
that pi2, the rental price of capital, is poorly measured. This may explain whyb4

is so imprecisely determined (i.e., the standard error is large relative to the size of
the coefficient estimate) that one cannot reject the hypothesis thatβ4 = 0 with a
t-ratio of−0.65 (= −0.22/0.34).24

To test the homogeneity restriction H0 : β3 + β4 + β5 = 1, we could write the
hypothesis in the formRβ = r with R = (0,0,1,1,1) andr = 1 and use the for-
mula (1.4.9) to calculate theF-ratio. The maintained hypothesis is the unrestricted
model (1.7.4) (that is, Assumptions 1.1–1.5 where the equation in Assumption 1.1
is (1.7.4)), so theb and the estimated variance ofb in the F-ratio formula should
come from the OLS estimation of (1.7.4). Alternatively, we can use theF-ratio for-
mula (1.4.11). The unrestricted model producingSSRU is (1.7.4) and the restricted
model producingSSRR is (1.7.6), which superimposes the null hypothesis on the
unrestricted model. The OLS estimate of (1.7.6) is

log

(
TCi

pi3

)
= −4.7

(0.88)
+ 0.72 log(Qi )

(0.017)

+ 0.59 log(pi1/pi3)

(0.20)
− 0.007 log(pi2/pi3)

(0.19)

R2 = 0.932, mean of dep. var.= −1.48,

SER= 0.39, SSR= 21.640, n = 145. (1.7.8)

The F test of the homogeneity restriction proceeds as follows.

Step 1: Using (1.4.11), theF-ratio can be calculated as

(21.640− 21.552)/1

21.552/(145− 5)
= 0.57.

Step 2: Find the critical value. The number of restrictions (equations) in the null
hypothesis is 1, andK (the number of coefficients) in the unrestricted
model (which is the maintained hypothesis) is 5. So the degrees of free-
dom are 1 and 140(= 145− 5). From the table ofF distributions, the
critical value is about 3.9.

Step 3: Thus, we can easily accept the homogeneity restriction, a very comforting
conclusion for those who take microeconomics seriously (like us).

24The consequence of measurement error is not just that the coefficient of the variable measured with error is
poorly determined; it could also contaminate the coefficient estimates for all other regressors. The appropriate
context to address this problem is the large sample theory for endogeneous regressors in Chapter 3.
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Detour: A Cautionary Note on R2

The R2 of 0.926 is surprisingly high for cross-section estimates, but some of the
explanatory power of the regression comes from the scale effect that total costs
increase with firm size. To gauge the contribution of the scale effect on theR2,
subtract log(Qi ) from both sides of (1.7.4) to obtain an equivalent cost function:

log

(
TCi

Qi

)
= β1 + (β2− 1) log(Qi )

+ β3 log(pi1)+ β4 log(pi2)+ β5 log(pi3)+ εi . (1.7.4′)

Here, the dependent variable is the average cost rather than total costs. Application
of the OLS to (1.7.4′) using the same data yields

log

(
TCi

Qi

)
= −3.5

(1.8)
− 0.28 log(Qi )

(0.017)

+ 0.44 log(pi1)

(0.29)
− 0.22 log(pi2)

(0.34)
+ 0.43 log(pi3)

(0.10)

R2 = 0.695, mean of dep. var.= −4.83,

SER= 0.392, SSR= 21.552, n = 145. (1.7.9)

As you no doubt have anticipated, the output coefficient is now−0.28 (= 0.72−1)
with the standard errors and the other coefficient estimates unchanged. TheR2

changes only because the dependent variable is different. It is nonsense to say
that the higherR2 makes (1.7.4) preferable to (1.7.4′), because the two equations
represent the same model. The point is: when comparing equations on the basis of
the fit, the equations must share the same dependent variable.

Testing Constant Returns to Scale

As an application of thet-test, consider testing whether returns to scale are constant
(r = 1). We take the maintained hypothesis to be the restricted model (1.7.6).
Becauseβ2 (the log output coefficient) equals 1 if and only ifr = 1, the null
hypothesis is that H0 : β2 = 1. Thet-test of constant returns to scale proceeds as
follows.

Step 1: Calculate thet-ratio for the hypothesis. From the estimation of the
restricted model, we haveb2 = 0.72 with a standard error of 0.017, so

t-ratio= 0.72− 1

0.017
= −16.
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Because the maintained hypothesis here is the restricted model (1.7.6),K
(the number of coefficients) = 4.

Step 2: Look for the critical value in thet (141) distribution. If the size of the test
is 5 percent, the critical value is 1.98.

Step 3: Since the absolute value of thet-ratio is far greater than the critical value,
we reject the hypothesis of constant returns to scale.

Importance of Plotting Residuals

The regression has a problem that cannot be seen from the estimated coefficients
and their standard errors. Figure 1.7 plots the residuals against log(Qi ). Notice two
things from the plot. First, as output increases, the residuals first tend to be positive,
then negative, and again positive. This strongly suggests that the degree of returns
to scale(r ) is not constant as assumed in the log-linear specification. Second, the
residuals are more widely scattered for lower outputs, which is a sign of a failure
of the homoskedasticity assumption that the error variance does not depend on
the regressors. To deal with these problems, Nerlove divided the sample of 145
firms into five groups of 29, ordered by output, and estimated the model (1.7.6)
separately for each group. This amounts to allowing all the coefficients (including
β2 = 1/r ) and the error variance to differ across the five groups differing in size.
Nerlove finds that returns to scale diminish steadily, from a high of well over 2 to a
low of slightly below 1, over the output range of the data. In the empirical exercise
of this chapter, the reader is asked to replicate this finding and do some further
analysis usingdummy variables and the weighted least squares.

Subsequent Developments

One strand of the subsequent literature is concerned about generalizing the Cobb-
Douglas technology while maintaining the assumption of cost minimization. An
obvious alternative to Cobb-Douglas is the Constant Elasticity of Substitution
(CES) production function, but it has two problems. First, the cost function
implied by the CES production function is highly nonlinear (which, though, could
be overcome by the use of nonlinear least squares to be covered in Chapter 7).
Second, the CES technology implies a constant degree of returns to scale. One
of Nerlove’s main findings is that the degree varies with output. Christensen and
Greene (1976) are probably the first to estimate the technology parameters allow-
ing for variable degrees of returns to scale. Using thetranslog cost functionintro-
duced by Christensen, Jorgenson, and Lau (1973), they find that the significant
scale economies evident in the 1955 data were mostly exhausted by 1970, with
most firms operating at much higher output levels where the AC curve is essen-
tially flat. Their work will be examined in detail in Chapter 4.
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Figure 1.7: Plot of Residuals against Log Output

Another issue is whether regulated firms minimize costs. The influential paper
by Averch and Johnson (1962) argues that the practice by regulators to guarantee
utilities a “fair rate of return” on their capital stock distorts the choice of input
levels. Since the fair rate of return is usually higher than the interest rate, utilities
have an incentive to overinvest. That is, they minimize costs, but the relevant
rate of return in the definition of the user cost of capital is the fair rate of return.
Consequently, unless the fair rate of return is used in the calculation ofpi2, the true
technology parameters cannot be estimated from the cost function. The fair-rate-
of-return regulation creates another econometric problem: to guarantee utilities a
fair rate of return, the price of electricity must be kept relatively high in markets
served by high-cost utilities. Thus output will be endogenous.

A more recent issue is whether the regulator has enough information to bring
about cost minimization. If the utility has more information about costs, it has an
incentive to misreport to the regulator the true value of the efficiency parameter.
Schemes to be adopted by the regulator to take into account this incentive problem
may not lead to cost minimization. Wolak’s (1994) empirical results for Califor-
nia’s water utility industry indicate that the observed level of costs and output is
better modeled as the outcome of a regulator-utility interaction under asymmetric
information. Wolak resolves the problem of the endogeneity of output by estimat-
ing the demand function along with the cost function. Doing so, however, requires
an estimation technique more sophisticated than the OLS.
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Q U E S T I O N S F O R R E V I E W

1. (Review of duality theory) Consult your favorite microeconomic textbook
to remember how to derive the Cobb-Douglas cost function from the Cobb-
Douglas production function.

2. (Change of units) In Nerlove’s data, output is measured in kilowatt hours. If
output were measured in megawatt hours, how would the estimated restricted
regression change?

3. (Recovering technology parameters from regression coefficients) Show that
the technology parameters(µ, α1, α2, α3) can be determined uniquely from
the first four equations in (1.7.5) and the definitionr ≡ α1+ α2+ α3. (Do not
use the fifth equationβ5 = α3/r .)

4. (Recovering left-out coefficients from restricted OLS) Calculate the restricted
OLS estimate ofβ5 from (1.7.8). How do you calculate the standard error ofb5

from the printout of the restricted OLS?Hint: Write b5 = a + c′b for suitably

chosen a and c where b here is (b1, . . . ,b4)
′. So Var(b5 | X) = c′ Var(b | X)c.

The printout from the restricted OLS should include \Var(b | X).
5. If you take pi2 instead ofpi3 and subtract log(pi2) from both sides of (1.7.4),

how does the restricted regression look? Without actually estimating it on
Nerlove’s data, can you tell from the estimated restricted regression in the
text what the restricted OLS estimate of(β1, . . . , β5) will be? Their standard
errors? TheSSR? What about theR2?

6. Why is theR2 of 0.926 from the unrestricted model (1.7.7)lower than theR2

of 0.932 from the restricted model (1.7.8)?

7. A more realistic assumption about the rental price of capital may be that there
is an economy-wide capital market sopi2 is the same across firms. In this case,

(a) Can we estimate the technology parameters?Hint: The answer is yes, but

why? When pi2 is constant, (1.7.4) will have the perfect multicollinearity

problem. But recall that (β1, . . . , β5) are not free parameters.

(b) Can we test homogeneity of the cost function in factor prices?

8. Taking logs of both sides of the production function (1.7.1), one can derive the
log-linear relationship:

log(Qi ) = α0+ α1 log(xi1)+ α2 log(xi2)+ α3 log(xi3)+ εi ,
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whereεi here is defined as log(Ai )−E[log(Ai )] andα0 = E[log(Ai )]. Suppose,
in addition to total costs, output, and factor prices, we had data on factor inputs.
Can we estimateα’s by applying OLS to this log-linear relationship? Why or
why not? Hint: Do input levels depend on εi ? Suggest a different way to
estimateα’s. Hint: Look at input shares.

P R O B L E M S E T F O R C H A P T E R 1

A N A L Y T I C A L E X E R C I S E S

1. (Proof thatb minimizesSSR) Let b be the OLS estimator ofβ. Prove that, for
any hypothetical estimate,̃β, of β,

(y− Xβ̃)′(y− Xβ̃) ≥ (y− Xb)′(y− Xb).

In your proof, use the add-and-subtract strategy: takey−Xβ̃, addXb to it and
then subtract the same from it. It produces the decomposition ofy− Xβ̃:

y− Xβ̃ = (y− Xb)+ (Xb − Xβ̃).

Hint: (y− Xβ̃)′(y− Xβ̃) = [(y− Xb)+ X(b− β̃)]′[(y − Xb)+ X(b− β̃)].
Using the normal equations, show that this equals

(y− Xb)′(y− Xb)+ (b− β̃)′X ′X(b− β̃).

2. (The annihilator associated with the vector of ones) Let1be then-dimensional
column vector of ones, and letM1 ≡ In − 1(1′1)−11′. That is,M1 is the anni-
hilator associated with1. Prove the following:

(a) M1 is symmetric and idempotent.

(b) M11= 0.

(c) M1y = y− ȳ · 1 where

ȳ = 1

n

n∑
i=1

yi .

M1y is the vector ofdeviations from the mean.

(d) M1X = X − 1x̄′ wherex̄ = X ′1/n. Thek-th element of theK × 1 vector
x̄ is 1

n

∑n
i=1 xik .
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3. (Deviation-from-the-mean regression) Consider a regression model with a con-
stant. LetX be partitioned as

X
(n×K )

=
[

1
n×1

... X2
n×(K−1)

]
so the first regressor is a constant. Partitionβ andb accordingly:

β =
[
β1

β2

] ← scalar

← (K − 1)× 1
, b =

[
b1

b2

]
.

Also let X̃2 ≡ M1X2 andỹ ≡ M1y. They are the deviations from the mean for
the nonconstant regressors and the dependent variable. Prove the following:

(a) The K normal equations are

ȳ− b1 − x̄′2b2 = 0

wherex̄2 = X ′21/n,

X ′2y− n · b1 · x̄2− X ′2X2b2 = 0
((K−1)×1)

.

(b) b2 = (X̃ ′2X̃2)
−1X̃ ′2ỹ. Hint: Substitute the first normal equation into the other

K −1 equations to eliminate b1 and solve for b2. This is a generalization of

the result you proved in Review Question 3 in Section 1.2.

4. (Partitioned regression, generalization of Exercise 3) LetX be partitioned as

X
(n×K )

= [ X1
(n×K1)

... X2
(n×K2)

]
.

Partitionβ accordingly:

β =
[
β1

β2

] ← K1× 1

← K2× 1
.

Thus, the regression can be written as

y = X1β1+ X2β2+ ε.

Let P1 ≡ X1(X ′1X1)
−1X ′1, M1 ≡ I − P1, X̃2 ≡ M1X2 andỹ ≡ M1y. Thus,ỹ is

the residual vector from the regression ofy on X1, and thek-th column ofX̃2

is the residual vector from the regression of the correspondingk-th column of
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X2 onX1. Prove the following:

(a) The normal equations are

X ′1X1b1+ X ′1X2b2 = X ′1y, (∗)
X ′2X1b1+ X ′2X2b2 = X ′2y. (∗∗)

(b) b2 = (X̃ ′2X̃2)
−1X̃ ′2ỹ. That is,b2 can be obtained by regressing the residuals

ỹ on the matrix of residuals̃X2. Hint: Derive X1β1 = −P1X2β2 + P1y
from (∗). Substitute this into (∗∗) to obtain X ′2M1X2β2 = X ′2M1y. Then

use the fact that M1 is symmetric and idempotent. Or, if you wish, you can

apply the brute force of the partitioned inverse formula (A.10) of Appendix

A to the coefficient matrix

X ′X =
[

X ′1X1 X ′1X2

X ′2X1 X ′2X2

]
.

Show that the second diagonal block of (X ′X)−1 is (X̃ ′2X̃2)
−1.

(c) The residuals from the regression ofỹ on X̃2 numerically equalse, the
residuals from the regression ofy on X (≡ (X1

... X2)). Hint: If e is the

residual from the regression of y on X,

y = X1b1+ X2b2+ e.

Premultiplying both sides by M1 and using M1X1 = 0, we obtain

ỹ = X̃2b2+M1e.

Show that M1e= eand observe that b2 equals the OLS coefficient estimate

in the regression of ỹ on X̃2.

(d) b2 = (X̃ ′2X̃2)
−1X̃ ′2y. Note the difference from (b). Here, the vector of

dependent variable isy, not ỹ. Are the residuals from the regression of
y on X̃2 numerically the same ase? [Answer: No.] Is theSSRfrom the
regression ofy on X̃2 the same as theSSRfrom the regression of̃y on X̃2?
[Answer: No.]

The results in (b)–(d) are known as theFrisch-Waugh Theorem.

(e) Show:

ỹ′ỹ− e′e= ỹ′X2(X ′2M1X2)
−1X ′2ỹ.
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Hint: Apply the general decomposition formula (1.2.15) to the regression in

(c) to derive

ỹ′ỹ = b′2X̃
′
2X̃2b2+ e′e.

Then use (b).

(f) Consider the following four regressions:

(1) regress̃y onX1.

(2) regress̃y on X̃2.

(3) regress̃y onX1 andX2.

(4) regress̃y onX2.

Let SSRj be the sum of squared residuals from regressionj . Show:

(i) SSR1 = ỹ′ỹ. Hint: ỹ is constructed so that X ′1ỹ = 0, so X1 should have

no explanatory power.

(ii) SSR2 = e′e. Hint: Use (c).

(iii) SSR3 = e′e. Hint: Apply the Frisch-Waugh Theorem on regression (3).

M1ỹ = ỹ.

(iv) Verify by numerical example thatSSR4 is not necessarily equal toe′e.

5. (Restricted regression andF) In the restricted least squares, the sum of squared
residuals is minimized subject to the constraint implied by the null hypothesis
Rβ = r . Form the Lagrangian as

L = 1

2
(y− Xβ̃)′(y− Xβ̃)+ λ′(Rβ̃ − r),

whereλ here is the #r -dimensional vector of Lagrange multipliers (recall:R
is #r × K , β̃ is K × 1, andr is #r × 1). Let β̂ be the restricted least squares
estimator ofβ. It is the solution to the constrained minimization problem.

(a) Let b be the unrestricted OLS estimator. Show:

β̂ = b− (X ′X)−1R′[R(X ′X)−1R′]−1(Rb− r),

λ = [R(X ′X)−1R′]−1(Rb− r).

Hint: The first-order conditions are X ′y− (X ′X)β̂ = R′λ or X ′(y− Xβ̂) =
R′λ. Combine this with the constraint Rβ̂ = r to solve for λ and β̂.
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(b) Let ε̂ ≡ y− Xβ̂, the residuals from the restricted regression. Show:

SSRR − SSRU = (b− β̂)′(X ′X)(b− β̂)
= (Rb− r)′[R(X ′X)−1R′]−1(Rb− r)

= λ′R(X ′X)−1R′λ

= ε̂′Pε̂,

whereP is the projection matrix.Hint: For the first equality, use the add-

and-subtract strategy:

SSRR = (y− Xβ̂)′(y− Xβ̂)

= [(y− Xb)+ X(b− β̂)]′[(y− Xb)+ X(b− β̂)].

Use the normal equations X ′(y − Xb) = 0. For the second and third

equalities, use (a). To prove the fourth equality, the easiest way is to use the

first-order condition mentioned in (a) that R′λ = X ′ε̂.

(c) Verify that you have proved in (b) that (1.4.9) = (1.4.11).

6. (Proof of the decomposition (1.2.17)) Take the unrestricted model to be a
regression where one of the regressors is a constant, and the restricted model
to be a regression where the only regressor is a constant.

(a) Show that (b) in the previous exercise is the decomposition (1.2.17) for this
case.Hint: What is β̂ for this case? Show that SSRR = ∑i (yi − ȳ)2 and

(b− β̂)′(X ′X)(b− β̂) =∑i (ŷ− ȳ)2.

(b) (R2 as anF-ratio) For a regression where one of the regressors is a con-
stant, prove that

F = R2/(K − 1)

(1− R2)/(n− K )
.

7. (Hausman principle in finite samples) For the generalized regression model,
prove the following. Here, it is understood that the expectations, variances, and
covariances are all conditional onX.

(a) Cov(β̂GLS,b − β̂GLS) = 0. Hint: Recall that, for any two random vectors x
and y,

Cov(x, y) ≡ E
[(

x− E(x)
)(

y− E(y)
)′]
.
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So

Cov(Ax,By) = A Cov(x, y)B′.

Also, since β is nonrandom,

Cov(β̂GLS,b− β̂GLS) = Cov(β̂GLS− β,b− β̂GLS).

(b) Let β̃ be any unbiased estimator and defineq ≡ β̃ − β̂GLS. Assumẽβ is
such thatVq ≡ Var(q) is nonsingular. Prove: Cov(β̂GLS,q) = 0. (If we
setβ̃ = b, we are back to (a).)Hint: Define: β̂ ≡ β̂GLS+ Hq for some H.

Show:

Var(β̂) = Var(β̂GLS)+ CH ′ + HC ′ + HVqH ′,

where C ≡ Cov(β̂GLS,q). Show that, if C 6= 0 then Var(β̂) can be made

smaller than Var(β̂GLS) by setting H = −CV−1
q . Argue that this is in con-

tradiction to Proposition 1.7(c).

(c) (Optional, only for those who are proficient in linear algebra) Prove: if the
K columns ofX are characteristic vectors ofV, thenb = β̂GLS, whereV is
then × n variance-covariance matrix of then-dimensional error vectorε.
(So not all unbiased estimators satisfy the requirement in (b) that Var(β̃ −
β̂GLS) be nonsingular.)Hint: For any n × n symmetric matrix V, there

exists an n×n matrix H such that H ′H = In (so H is an orthogonal matrix)

and H ′VH = 3, where 3 is a diagonal matrix with the characteristic roots

(which are real since V is symmetric) of V in the diagonal. The columns of

H are called the characteristic vectors of V. Show that

H−1 = H ′, H ′V−1H = 3−1, H ′V−1 = 3−1H ′.

Without loss of generality, X can be taken to be the first K columns of H.

So X = HF, where

F
(n×K )

=
[

I K

0

]
.

E M P I R I C A L E X E R C I S E S

Read Marc Nerlove, “Returns to Scale in Electricity Supply” (except paragraphs
of equations (6)–(9), the part of section 2 from p. 184 on, and Appendix A and
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C) before doing this exercise. For 145 electric utility companies in 1955, the file
NERLOVE.ASC has data on the following:

Column 1: total costs (call itTC) in millions of dollars
Column 2: output(Q) in billions of kilowatt hours
Column 3: price of labor(PL)
Column 4: price of fuels(PF)
Column 5: price of capital(PK).

They are from the data appendix of his article. There are 145 observations, and
the observations are ordered in size, observation 1 being the smallest company
and observation 145 the largest. Using the data transformation facilities of your
computer software, generate for each of the 145 firms the variables required for
estimation. To estimate (1.7.4), for example, you need to generate log(TC), a con-
stant, log(Q), log(PL), log(PK), and log(PF), for each of the 145 firms.

(a) (Data question) Does Nerlove’s construction of the price of capital conform to
the definition of the user cost of capital?Hint: Read Nerlove’s Appendix B.4.

(b) Estimate the unrestricted model (1.7.4) by OLS. Can you replicate the esti-
mates in the text?

(c) (Restricted least squares) Estimate the restricted model (1.7.6) by OLS. To do
this, you need to generate a new set of variables for each of the 145 firms. For
example, the dependent variable is log(TC/PF), not log(TC). Can you repli-
cate the estimates in the text? Can you replicate Nerlove’s results? Nerlove’s
estimate ofβ2, for example, is 0.721 with a standard error of 0.0174 (the stan-
dard error in his paper is 0.175, but it is probably a typographical error). Where
in Nerlove’s paper can you find this estimate? What about the other coeffi-
cients? (Warning: You will not be able to replicate Nerlove’s results precisely.
One reason is that he used common rather than natural logarithms; however,
this should affect only the estimated intercept term. The other reason: the data
set used for his results is a corrected version of the data set published with his
article.)

As mentioned in the text, the plot of residuals suggests a nonlinear rela-
tionship between log(TC) and log(Q). Nerlove hypothesized that esti-
mated returns to scale varied with the level of output. Following Nerlove,
divide the sample of 145 firms into five subsamples or groups, each hav-
ing 29 firms. (Recall that since the data are ordered by level of output, the
first 29 observations will have the smallest output levels, whereas the last
29 observations will have the largest output levels.) Consider the following
three generalizations of the model (1.7.6):
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Model 1: Both the coefficients (β’s) and the error variance in (1.7.6) differ across
groups.

Model 2: The coefficients are different, but the error variance is the same across
groups.

Model 3: While each group has common coefficients forβ3 andβ4 (price elastic-
ities) and common error variance, it has a different intercept term and a
differentβ2. Model 3 is what Nerlove called the hypothesis of neutral
variations in returns to scale.

For Model 1, the coefficients and error variances specific to groups can be esti-
mated from

y( j ) = X( j )β( j ) + ε( j ) ( j = 1, . . . ,5),

wherey( j ) (29× 1) is the vector of the values of the dependent variable for group
j , X( j ) (29× 4) is the matrix of the values of the four regressors for groupj , β ( j )

(4× 1) is the coefficient vector for groupj , andε( j ) (29× 1) is the error vector.
The second column ofX(5), for example, is log(Q) for i = 117, . . . ,145. Model 1
assumes conditional homoskedasticity E(ε( j )ε( j )′ | X( j )) = σ 2

j I29 within (but not
necessarily across) groups.

(d) Estimate Model 1 by OLS. How well can you replicate Nerlove’s reported
results? On the basis of your estimates ofβ2, compute the point estimates
of returns to scale in each of the five groups. What is the general pattern of
estimated scale economies as the level of output increases? What is the general
pattern of the estimated error variance as output increases?

Model 2 assumes for Model 1 thatσ 2
j = σ 2 for all j . This equivariance

restriction can be incorporated by stacking vectors and matrices as follows:

y = Xβ + ε,
where

y
(145×1)

=
y(1)
...

y(5)

 , X
(145×20)

=
X(1)

. . .

X(5)

 , ε
(145×1)

=
ε

(1)

...

ε(5)

 . (∗)

In particular,X is now a block-diagonal matrix. The equivariance restriction
can be expressed as E(εε′ | X) = σ 2 I145. There are now 20 variables derived from
the original four regressors. The 145 dimensional vector corresponding to the sec-
ond variable, for example, has log(Q1), . . . , log(Q29) as the first 29 elements and
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zeros elsewhere. The vector corresponding to the 6th variable, which represents
log output for the second group of firms, has log(Q30), . . . , log(Q58) for the 30th
through 58th elements and zeros elsewhere, and so on.

The stacking operation needed to form they andX in (∗) can be done easily
if your computer software is matrix-based. Otherwise, you trick your software
into accomplishing the same thing by the use of dummy variables. Define thej -th
dummy variable as

Dji =
{

1 if firm i belongs to thej -th group,

0 otherwise,
(i = 1, . . . ,145).

Then the second regressor isD1i · log(Qi ). The 6th variable isD2i · log(Qi ), and
so forth.

(e) Estimate Model 2 by OLS. Verify that the OLS coefficient estimates here are
the same as those in (d). Also verify that

5∑
j=1

SSRj = SSR,

whereSSRj is theSSRfrom the j -th group in your estimation of Model 1 in
(d) andSSRis theSSRfrom Model 2. This agreement is not by accident, i.e.,
not specific to the present data set. Prove that this agreement for the coeffi-
cients and theSSRholds in general, temporarily assuming just two groups
without loss of generality.Hint: First show that the coefficient estimate is the

same between Model 1 and Model 2. Use formulas (A.4), (A.5), and (A.9) of

Appendix A.

(f) (Chow test) Model 2 is more general than Model (1.7.6) because the coeffi-
cients can differ across groups. Test the null hypothesis that the coefficients
are the same across groups. How many equations (restrictions) are in the
null hypothesis? This test is sometimes called theChow test for structural
change. Calculate thep-value of theF-ratio. Hint: This is a linear hypoth-

esis about the coefficients of Model 2. So take Model 2 to be the maintained

hypothesis and (1.7.6) to be the restricted model. Use the formula (1.4.11) for

the F -ratio.

Gauss Tip: If x is the F-ratio, the Gauss commandcdffc( x,df1,df2 )

gives the area to the right ofF for the F distribution with d f 1 andd f 2
degrees of freedom.
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TSP Tip: The TSP command to do the same iscdf(f, df1= df1 , df2=

df2 ) x . An output of TSP’s OLS command,OLSQ, is @SSR, which is the
SSRfor the regression.

RATS Tip: The RATS command iscdf ftest x df1 df2 . An output
of RATS’s OLS command,LINREG, is %RSS, which is theSSRfor the
regression.

The restriction in Model 3 that the price elasticities are the same across firm
groups can be imposed on Model 2 by applying the dummy variable transformation
only to the constant and log output. Thus, there are 12(= 2× 5+ 2) variables in
X. Now X looks like

X =

1 log(Q1) 0 0 log(PL1/PF1) log(PK1/PF1)
...

...
...

...
...

...

1 log(Q29) 0 0 log(PL29/PF29) log(PK29/PF29)

. . .
...

...

0 0 1 log(Q117) log(PL117/PF117) log(PK117/PF117)
...

...
...

...
...

...

0 0 1 log(Q145) log(PL145/PF145) log(PK145/PF145)


(∗∗)

(g) Estimate Model 3. The model is a special case of Model 2, with the hypothesis
that the two price elasticities are the same across the five groups. Test the
hypothesis at a significance level of 5 percent, assuming normality. (Note:
Nerlove’sF-ratio on p. 183 is wrong.)

As has become clear from the plot of residuals in Figure 1.7, the conditional
second moment E(ε2

i | X) is likely to depend on log output, which is a violation
of the conditional homoskedasticity assumption. This time we do not attempt to
test conditional homoskedasticity, because to do so requires large sample theory
and is postponed until the next chapter. Instead, we pretend to know the form of
the function linking the conditional second moment to log output. The function,
specified below, implies that the conditional second moment varies continuously
with output, contrary to the three models we have considered above. Also contrary
to those models, we assume that the degree of returns to scale varies continuously
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with output by including the square of log output.25 Model 4 is

Model 4:

log

(
TCi

pi3

)
= β1+ β2 log(Qi )+ β3 [log(Qi )]2

+ β4 log

(
pi1

pi3

)
+ β5 log

(
pi2

pi3

)
+ εi

E(ε2
i | X) = σ 2 ·

(
0.0565+ 2.1377

Qi

)
(i = 1,2, . . . ,145)

for some unknownσ 2.

(h) Estimate Model 4 by weighted least squares on the whole sample of 145 firms.
(Be careful about the treatment of the intercept; in the equation after weighting,
none of the regressors is a constant.) Plot the residuals. Is there still evidence
for conditional homoskedasticity or further nonlinearities?

M O N T E C A R L O E X E R C I S E S

Monte Carlo analysis simulates a large number of samples from the model to
study the finite-sample distribution of estimators. In this exercise, we use the tech-
nique to confirm the two finite-sample results of the text: the unbiasedness of the
OLS coefficient estimator and the distribution of thet-ratio. The model is the fol-
lowing simple regression model satisfying Assumptions 1.1–1.5 withn = 32. The
regression equation is

yi = β1+ β2xi + εi (i = 1,2, . . . ,n)

or y = 1 · β1+ x · β2+ ε = Xβ + ε, (∗)

whereX = (1 ... x) andβ = (β1, β2)
′. The model parameters are(β1, β2, σ

2).
As mentioned in the text, a model is a set of joint distributions of(y,X). We

pick a particular joint distribution by specifying the regression model as follows.
Setβ1 = 1, β2 = 0.5, andσ 2 = 1. The distribution ofx = (x1, x2, . . . , xn)

′ is
specified by the following AR(1) process:

xi = c+ φxi−1 + ηi (i = 1,2, . . . ,n), (∗∗)

25We have derived the log-linear cost function from the Cobb-Douglas production function. Does there exist a
production function from which this generalized cost function with a quadratic term in log output can be derived?
This is a question of the “integrability” of cost functions and is discussed in detail in Christensen et al. (1973).
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where{ηi } is i.i.d. N(0,1) and

x0 ∼ N
( c

1− φ ,
1

1− φ2

)
, c = 2, φ = 0.6.

This fixes the joint distribution of(y,X). From this distribution, a large number of
samples will be drawn.

In programming the simulation, the following expression forx will be useful.
Solve the first-order difference equation (∗∗) to obtain

xi = φ i x0 + (1+ φ + φ2+ · · · + φ i−1)c

+ (ηi + φηi−1 + φ2ηi−2 + · · · + φ i−1η1),

or, in matrix notation,

x
(n×1)
= r

(n×1)
· x0+ d

(n×1)
+ A

(n×n)
η

(n×1)
, (∗∗∗)

whered = (d1,d2, . . . ,dn)
′ and

d1 = c, d2 = (1+ φ)c, . . . , di = (1+ φ + φ2+ · · · + φ i−1)c, . . . ,

r =


φ

φ2

...

φn

 , A =



1 0 . . . . . . . 0
φ 1 0 . . . 0

φ2 φ 1
. . . 0

...
...

. . .
. . .

...

φn−1 φn−2 . . . φ 1


, η =


η1

η2
...

ηn

 .

Gauss Tip: To form ther matrix, useseqm. To form theA matrix, usetoeplitz

andlowmat .

(a) Run two Monte Carlo simulations. The first simulation calculates E(b | x) and
the distribution of thet-ratio as a distribution conditional onx. A computer
program for the first simulation should consist of the following steps.

(1) (Generatex just once) Using the random number generator, draw a vector
η of n i.i.d. random variables fromN(0,1) andx0 from N(c/(1− φ),1/
(1− φ2)), and calculatex by (∗∗∗). (Calculation ofx can also be accom-
plished recursively by (∗∗) with a do loop, but vector operations such as
(∗∗∗) consume less CPU time than do loops. This becomes a consideration
in the second simulation, wherex has to be generated in each replication.)
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(2) Set a counter to zero. The counter will record the incidence that|t| >
t0.025(n−2). Also, set a two-dimensional vector at zero; this vector will be
used for calculating the mean of the OLS estimatorb of (β1, β2)

′.

(3) Start a do loop of a large number of replications (1 million, say). In each
replication, do the following.

(i) (Generatey) Draw ann dimensional vectorε of n i.i.d. random vari-
ables fromN(0,1), and calculatey = (y1, . . . , yn)

′ by (∗). This y is
paired with the samex from step (1) to form a sample(y, x).

(ii) From the sample, calculate the OLS estimatorb and thet-value for
H0 : β2 = 0.5.

(iii) Increase the counter by one if|t| > t0.025(n − 2). Also, addb to the
two-dimensional vector.

(4) After the do loop, divide the counter by the number of replications to calcu-
late the frequency of rejecting the null. Also, divide the two-dimensional
vector that has accumulatedb by the number of replications. It should
equal E(b | x) if the number of replications is infinite.

Note that in this first simulation,x is fixedthroughout the do loop fory. The
second simulation calculates theunconditional distribution of thet-ratio. It
should consist of the following steps.

(1) Set the counter to zero.

(2) Start a do loop of a large number of replications. In each replication, do the
following.

(i) (Generatex) Draw a vectorη of n i.i.d. random variables fromN(0,1)
andx0 from N(c/(1− φ),1/(1− φ2)), and calculatex by (∗∗∗).

(ii) (Generatey) Draw a vectorε of n i.i.d. random variables fromN(0,1),
and calculatey = (y1, . . . , yn)

′ by (∗).
(iii) From a sample(y, x) thus generated, calculate thet-value for H0 : β =

0.5 from the sample(y, x).

(iv) Increase the counter by one if|t| > t0.025(n− 2).

(3) After the do loop, divide the counter by the number of replications.

For the two simulations, verify that, for a sufficiently large number of replica-
tions,
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1. the mean ofb from the first simulation is arbitrarily close to the true value
(1,0.5);

2. the frequency of rejecting the true hypothesis H0 (the type I error) is arbi-
trarily close to 5 percent in either simulation.

(b) In those two simulations, is the (nonconstant) regressor strictly exogenous? Is
the error conditionally homoskedastic?

A N S W E R S T O S E L E C T E D Q U E S T I O N S

A N A L Y T I C A L E X E R C I S E S

1. (y− Xβ̃)′(y− Xβ̃)

= [(y− Xb)+ X(b− β̃)]′[(y− Xb)+ X(b− β̃)]
(by the add-and-subtract strategy)

= [(y− Xb)′ + (b− β̃)′X ′][(y− Xb)+ X(b− β̃)]
= (y− Xb)′(y− Xb)+ (b− β̃)′X ′(y− Xb)

+ (y− Xb)′X(b− β̃)+ (b− β̃)′X ′X(b− β̃)
= (y− Xb)′(y− Xb)+ 2(b− β̃)′X ′(y− Xb)+ (b− β̃)′X ′X(b− β̃)

(since(b− β̃)′X ′(y− Xb) = (y− Xb)′X(b− β̃))
= (y− Xb)′(y− Xb)+ (b− β̃)′X ′X(b− β̃)

(sinceX ′(y− Xb) = 0 by the normal equations)

≥ (y− Xb)′(y− Xb)

(since(b− β̃)′X ′X(b− β̃) = z′z=
n∑

i=1

z2
i ≥ 0 wherez≡ X(b− β̃)).

7a. β̂GLS− β = Aε whereA ≡ (X ′V−1X)−1X ′V−1 andb − β̂GLS = Bε where
B ≡ (X ′X)−1X ′ − (X ′V−1X)−1X ′V−1. So

Cov(β̂GLS− β,b− β̂GLS)

= Cov(Aε,Bε)

= A Var(ε)B′

= σ 2AVB ′.

It is straightforward to show thatAVB ′ = 0.
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7b. For the choice ofH indicated in the hint,

Var(β̂)− Var(β̂GLS) = −CV−1
q C′.

If C 6= 0, then there exists a nonzero vectorz such thatC′z≡ v 6= 0. For such
z,

z′[Var(β̂)− Var(β̂GLS)]z= −v′V−1
q v < 0 (sinceVq is positive definite),

which is a contradiction becausêβGLS is efficient.

E M P I R I C A L E X E R C I S E S

(a) Nerlove’s description in Appendix B.4 leads one to believe that he did not
include the depreciation rateδ in his construction of the price of capital.

(b) Your estimates should agree with (1.7.7).

(c) Our estimates differ from Nerlove’s slightly. This would happen even if the
data used by Nerlove were the same as those provided to you, because comput-
ers in his age were much less precise and had more frequent rounding errors.

(d) How well can you replicate Nerlove’s reported results? Fairly well. The point
estimates of returns to scale in each of the five subsamples are 2.5, 1.5, 1.1, 1.1,
and .96. As the level of output increases, the returns to scale decline.

(e) Model 2 can be written asy = Xβ + ε, wherey, X, andε are as in (∗). So
(setting j = 2),

X ′X =
[

X(1)′X(1) 0
0 X(2)′X(2)

]
,

which means

(X ′X)−1 =
[(

X(1)′X(1)
)−1

0

0
(
X(2)′X(2)

)−1

]
.

And

X ′y =
[

X(1)′y(1)

X(2)′y(2)

]
.
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Therefore,

(X ′X)−1X ′y =
[(

X(1)′X(1)
)−1

X(1)′y(1)(
X(2)′X(2)

)−1
X(2)′y(2)

]
.

Thus, the OLS estimate of the coefficient vector for Model 2 is the same as that
for Model 1. Since the estimate of the coefficient vector is the same, the sum
of squared residuals, too, is the same.

(f) The number of restrictions is 16.K = #coefficients in Model 2= 20. So the
two degrees of freedom should be(16,125). SSRU = 12.262 andSSRR =
21.640. F-ratio = 5.97 with a p-value of 0.0000. So this can be rejected at
any reasonable significance level.

(g) SSRU = 12.262 andSSRR = 12.577. SoF = .40 with 8 and 125 degrees of
freedom. Itsp-value is 0.92. So the restrictions can be accepted at any reason-
able significance level. Nerlove’sF-ratio (see p. 183, 8th line from bottom) is
1.576.

(h) The plot still shows that the conditional second moment is somewhat larger for
smaller firms, but now there is no evidence for possible nonlinearities.
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